
User’s Guide
Version 1

Embedded Target for the
TI TMS320C2000™ DSP Platform

For Use with Real-Time Workshop®

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information
508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Embedded Target for the TI TMS320C2000 DSP Platform User’s Guide
© COPYRIGHT 2003 - 2005 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox are
registered trademarks of The MathWorks, Inc. Other product or brand names are trademarks
or registered trademarks of their respective holders.

Patents
The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History

 November 2003 Online only New for Version 1.0 (Release 13SP1+)
 June 2004 Online only Revised for Version 1.1 (Release 14)

October 2004 Online only Revised for Version 1.1.1 (Release 14SP1)
December 2004 Online only Revised for Version 1.2 (Release 14SP1+)
March 2005 Online only Revised for Version 1.2.1 (Release 14SP2)
September 2005 Online only Revised for Version 1.3 (Release 14SP3)

i

Contents

1
Getting Started

What Is the Embedded Target for the TI TMS320C2000
DSP Platform? . 1-2

Suitable Applications . 1-2

Setting Up and Configuring . 1-3
Platform Requirements — Hardware and Operating System . 1-3
Supported Hardware for Targets . 1-3
Software Requirements . 1-4
Verifying the Configuration . 1-6

Embedded Target for TI C2000 and Code Composer Studio 1-8
Default Project Configuration . 1-8

Data Type Support . 1-9

Scheduling and Timing . 1-10
High Speed Peripheral Clock . 1-11

Overview of Creating Models for Targeting 1-12
Online Help . 1-12
Notes About Selecting Blocks for Your Models 1-13
S-Function Builder Blocks . 1-14
Setting Simulation Configuration Parameters 1-14
Building Your Model . 1-15

Using the c2000lib Blockset . 1-17
Hardware Setup . 1-17
Starting the c2000lib Library . 1-17
Setting Up the Model . 1-20
Adding Blocks to the Model . 1-26
Generating Code from the Model . 1-29
Creating Code Composer Studio Projects Without Loading . . 1-30

ii Contents

2
Using the IQmath Library

About the IQmath Library . 2-2
Common Characteristics . 2-3

Fixed-Point Numbers . 2-4
Signed Fixed-Point Numbers . 2-4
Q Format Notation . 2-5

Building Models . 2-9
Converting Data Types . 2-9
Using Sources and Sinks . 2-9
Choosing Blocks to Optimize Code . 2-9

3
Block Reference

Blocks — Categorical List . 3-2
C2000 Target Preferences Library (c2000tgtpreflib) 3-2
Host-side CAN Blocks (c2000canlib) . 3-3
C2000 RTDX Instrumentation Library (rtdxBlocks) 3-3
C2800 DSP Chip Support Library (c2800dspchiplib) 3-4
C2400 DSP Chip Support Library (c2400dspchiplib) 3-5
C28x Digital Motor Control Library (c28xdmclib) 3-6
C28x IQmath Library (tiiqmathlib) . 3-7

Blocks — Alphabetical List . 3-8

Index

1
Getting Started

This chapter describes how to use the Embedded Target for TI C2000 DSP to create and execute
applications on Texas Instruments C2000 development boards. To use the targeting software, you
should be familiar with using Simulink to create models and with the basic concepts of Real-Time
Workshop automatic code generation. To read more about Real-Time Workshop, refer to your
Real-Time Workshop documentation.

What Is the Embedded Target for the
TI TMS320C2000 DSP Platform?
(p. 1-2)

Introduces the Embedded Target for TI C2000 DSP and
describes some of its features and supported hardware

Setting Up and Configuring (p. 1-3) Describes the software and hardware required to use the
Embedded Target for the TI TMS320C2000 DSP Platform
and how to set them up

Embedded Target for TI C2000 and
Code Composer Studio (p. 1-8)

Information about Code Composer Studio

Scheduling and Timing (p. 1-10) Information about C2000 scheduling

Overview of Creating Models for
Targeting (p. 1-12)

Summary of steps required to create models for your
target

Using the c2000lib Blockset (p. 1-17) Example of creating a model and targeting hardware

1 Getting Started

1-2

What Is the Embedded Target for the TI TMS320C2000 DSP
Platform?

The Embedded Target for the TI TMS320C2000™ DSP Platform integrates
Simulink® and MATLAB® with Texas Instruments eXpressDSP™ tools. You
can use this product to develop and validate digital signal processing and
control designs from concept through code. The Embedded Target for the TI
TMS320C2000 DSP Platform uses C code generated by Real-Time Workshop®
and your TI development tools to generate a C language real-time
implementation of your Simulink model. Real-Time Workshop builds a Code
Composer Studio™ project from the C code. You can compile, link, download,
and execute the generated code on an eZdsp™ DSP board from Spectrum
Digital.

Suitable Applications
The Embedded Target for the TI TMS320C2000 DSP Platform enables you to
develop digital signal processing and control applications. Some important
characteristics of the applications that you can develop are

• Fixed-point arithmetic

• Single rate

• Multirate

• Adaptive

• Frame based

Setting Up and Configuring

1-3

Setting Up and Configuring

Platform Requirements — Hardware and Operating
System
To run the Embedded Target for the TI TMS320C2000 DSP Platform, your
host PC must meet the following hardware configuration:

• Intel Pentium or Intel Pentium processor-compatible PC

• 64 MB RAM (128 MB recommended)

• 20 MB hard disk space available after installing MATLAB

• Color monitor

• One parallel printer port or one USB port to connect your target board to
your PC

• CD-ROM drive

• Windows 2000 or Windows XP

You may need additional hardware, such as signal sources and generators,
oscilloscopes or signal display systems, and assorted cables to test and evaluate
your application on your hardware.

Supported Hardware for Targets
The Embedded Target for TI C2000 DSP supports the following boards:

• TMS320F2812 eZdsp DSK — the F2812eZdsp DSP Starter Kit

• TMS320LF2407 eZdsp DSK — the LF2407eZdsp DSP Starter Kit

The above DSP Starter Kits (DSKs) help developers evaluate digital signal
processing applications for the Texas Instruments DSP chips. You can create,
test, and deploy your processing software and algorithms on the target
processor without the difficulties inherent in starting with the digital signal
processor itself and building the support hardware to test the application on
the processor. Instead, the development board provides the input hardware,
output hardware, timing circuitry, memory, and power for the digital signal
processor. Texas Instruments provides the software tools, such as the C
compiler, linker, assembler, and integrated development environment, for PC
users to develop, download, and test their algorithms and applications on the
processor.

1 Getting Started

1-4

Refer to the documentation provided with your hardware for information on
setting up and testing your target board.

Note You do not need to change any jumpers from their factory defaults on
either the LF2407 or F2812 target board.

The factory default jumper setting for both the LF2407 and F2812 target
boards is for microcontroller mode. The Embedded Target for the TI
TMS320C2000 DSP Platform does not support microprocessor mode.

Software Requirements

MathWorks Software
For up-to-date information about other MathWorks software you need to use
the Embedded Target for the TI TMS320C2000 DSP Platform, refer to the
MathWorks Web site — http://www.mathworks.com. Check the Products area
for the Embedded Target for the TI TMS320C2000 DSP Platform.

For information about the software required to use the Link for Code Composer
Studio Development Tools, refer to the Products area of the MathWorks Web
site — http://www.mathworks.com.

Texas Instruments Software
In addition to the required software from The MathWorks, Embedded Target
for the TI TMS320C2000 DSP Platform requires that you install the Texas
Instruments development tools and software listed in the following table.

Setting Up and Configuring

1-5

Installing Code Composer Studio IDE Version 2.12 or 2.2 for the C28x series
installs the software shown.

In addition to the TI software, you need one or more TMS320F2812 eZdsp DSP
Starter Kits or TMS320LF2407 eZdsp DSP Starter Kits from Spectrum Digital.

Required TI Software for Targeting Your TI C2000 Hardware

Installed Product Additional Information

Assembler Creates object code (.obj) for C2000 boards from
assembly code

Compiler Compiles C code from the blocks in Simulink
models into object code (.obj). As a byproduct of the
compilation process, you get assembly code (.asm) as
well.

Linker Combines various input files, such as object files
and libraries

Code Composer
Studio

Texas Instruments integrated development
environment (IDE) that provides code debugging
and development tools

TI C2000
miscellaneous
utilities

Various tools for developing applications for the
C2000 digital signal processor family

Code Composer
Setup Utility

Program you use to configure your CCS installation
by selecting your target boards or simulator

1 Getting Started

1-6

Verifying the Configuration
To determine whether the Embedded Target for the TI TMS320C2000 DSP
Platform is installed on your system, type this command at the MATLAB
prompt.

c2000lib

When you enter this command, MATLAB displays the C2000 block library
containing the following libraries and blocks that comprise the C2000 library:

• C2000 Target Preferences

• Host-side CAN Blocks

• C2800 RTDX Instrumentation

• C2800 DSP Core Support

• C2400 DSP Core Support

• C28x DMC Library

• C28x IQMath Library

• Info block

• Demos block

If you do not see the listed libraries, or MATLAB does not recognize the
command, you need to install the Embedded Target for the TI TMS320C2000
DSP Platform. Without the software, you cannot use Simulink and Real-Time
Workshop to develop applications targeted to the TI boards.

Note For up-to-date information about system requirements, refer to the
system requirements page, available in the Products area at the MathWorks
Web site (http://www.mathworks.com).

To verify that Code Composer Studio (CCS) is installed on your machine, enter

ccsboardinfo

at the MATLAB command line. With CCS installed and configured, MATLAB
returns information about the boards that CCS recognizes on your machine, in
a form similar to the following listing.

Setting Up and Configuring

1-7

Board Board Proc Processor Processor
Num Name Num Name Type
--- ---------------------------------- ---
1 F2812 Simulator 0 CPU TMS320C28xx
0 F2812 PP Emulator 0 CPU_1 TMS320C28xx

If MATLAB does not return information about any boards, revisit your CCS
installation and setup in your CCS documentation.

As a final test, launch CCS to ensure that it starts up successfully. For the
Embedded Target for the TI TMS320C2000 DSP Platform to operate with CCS,
the CCS IDE must be able to run on its own.

Note For any model to work in the targeting environment, you must select
the discrete-time solver in the Solver options pane of the Simulink
Configuration Parameters dialog box. Targeting does not work with
continuous-time solvers.

1 Getting Started

1-8

Embedded Target for TI C2000 and Code Composer Studio
Texas Instruments (TI) facilitates development of software for TI DSPs by
offering Code Composer Studio (CCS) Integrated Development Environment
(IDE) . Used in combination with your Embedded Target for TI C2000 DSP and
Real-Time Workshop, CCS provides an integrated environment that, once
installed, requires no coding.

Executing code generated from Real-Time Workshop on a particular target
requires that Real-Time Workshop generate target code that is tailored to the
specific hardware target. Target-specific code includes I/O device drivers and
interrupt service routines (ISRs). Generated source code must be compiled and
linked using CCS so that it can be loaded and executed on a TI DSP. To help
you to build an executable, the Embedded Target for TI C2000 DSP uses the
Link for Code Composer Studio to start the code building process within CCS.
Once you download your executable to your target and run it, the code runs
wholly on the target. You can access the running process only from the CCS
debugging tools or across a link using Link for Code Composer Studio
Development Tools.

Default Project Configuration
CCS offers two standard project configurations, Release and Debug. Project
configurations define sets of project build options. When you specify the build
options at the project level, the options apply to all files in your project. For
more information about the build options, refer to your TI documentation. The
models you build with the Embedded Target for TI C2000 DSP use a custom
configuration that provides a third combination of build and optimization
settings — custom_MW.

Default Build Options in the custom_MW Configuration
The default settings for custom_MW are the same as the Release project
configuration in CCS, except for the compiler options. custom_MW uses
Function(-o2) for the compiler optimization level.

Your CCS documentation provides complete details on the compiler build
options. You can change the individual settings or the build configuration
within CCS.

Data Type Support

1-9

Data Type Support
The TI C2000 DSP chips suppport 16-bit data types and do not have native
8-bit data types. Simulink and the Embedded Target for TI C2000 support
many data types, including 8-bit data types.

If you select int8 or uint8 in your model, your simulation will run with 8-bit
data, but in the generated code, that data will be represented as 16-bit. This
may cause instances where data overflow and wraparound occurs in the
simulation, but not in the generated code.

For example, if you want the overflow behavior of the simulation and generated
code to match for a Simulink Add block in your model, select Saturate on
integer overflow in that block.

1 Getting Started

1-10

Scheduling and Timing
A timer interrupt is used to run generated code in real time on the C2000 DSP.
Each iteration of the model solver is run after an interrupt has been posted and
serviced by an interrupt service routine (ISR). The code generated for the C28x
uses CPU_timer0. The code generated for the C24x uses an Event Manager (EV)
timer, which you can select.

The timer is configured so that the model’s base rate sample time corresponds
to the interrupt rate. The timer period and prescaler are calculated and set up
to ensure the desired rate as follows:

The minimum achievable base rate sample time depends on the model
complexity. The maximum value depends on the maximum timer period value
(232-1 for the F2812 or 216-1 for the LF2407), the CPU clock speed and, for the
LF2407, the TimerClockPrescaler setting in the appropriate Target
Preferences block. The CPU clock speed for the LF2407 is 40 MHz and for the
F2812 it is 150 MHz.

Maximum Sample Times

TimerClockPrescaler
Setting

C24x Maximum
Sample Time (s)

C28x Maximum
Sample Time (s)

1 0.0016 28.63

2 0.0032 N/A

4 0.0065 N/A

8 0.0131 N/A

16 0.0262 N/A

32 0.0524 N/A

64 0.1048 N/A

128 0.2097 N/A

Base Rate Sample Time Timer Period
Timer Clock Speed()

TimerClockPrescaler
---⎝ ⎠
⎛ ⎞
--=

Scheduling and Timing

1-11

High Speed Peripheral Clock
The event managers and their general purpose timers, which drive PWM
waveform generation use the high speed peripheral clock (HISCLK). By
default, this clock is always selected in the Embedded Target for TI C2000.
This clock is derived from the system clock (SYSCLKOUT):

HISCLK = SYSCLKOUT / (high speed peripheral prescaler)

The high speed peripheral prescaler is determined by the HSPCLK bits set in
SysCtrl. The default value of HSPCLK is 1, which corresponds to a high speed
peripheral prescaler value of 2. As a result the HISCLK becomes

HISCLK = 150 MHz / 2 = 75 MHz

1 Getting Started

1-12

Overview of Creating Models for Targeting
After you have installed the supported development board, start MATLAB. At
the MATLAB command prompt, type

c2000lib

This opens the c2000lib Simulink blockset that includes libraries containing
blocks predefined for C2000 input and output devices. As needed, add the
blocks to your model. See “Using the c2000lib Blockset” on page 1-17 for an
example of how to use this library.

Create your real-time model for your application the way you create any other
Simulink model — by using standard blocks and C-MEX S-functions. Select
blocks to build your model from the following sources:

• Appropriate Target Preferences library block, to set preferences for your
target and application

• From the appropriate libraries in the c2000lib block library, to handle input
and output functions for your target hardware

• From Real-Time Workshop

• From Simulink Fixed Point

• Discrete time blocks from Simulink

• From any other blockset that meets your needs and operates in the discrete
time domain

Online Help
To get general help for using the Embedded Target for the TI TMS320C2000
DSP Platform, use the help feature in MATLAB. At the command prompt, type

help tic2000

to get a list of the functions and block libraries included in the Embedded
Target for the TI TMS320C2000 DSP Platform. Or select Help ->Full Product
Family Help from the menu bar in the MATLAB desktop. When you see the
Table of Contents in Help, select Embedded Target for the TI C2000 DSP.

Overview of Creating Models for Targeting

1-13

Notes About Selecting Blocks for Your Models
Many blocks in the blocksets communicate with your MATLAB workspace.
These blocks also generate code, but they do not work on the target as they do
on your desktop — in general, they slow your signal processing application
without adding instrumentation value.

For this reason, The MathWorks recommends that you avoid using certain
blocks, such as the Scope block and some source and sink blocks, in Simulink
models that you use on Embedded Target for TI C2000 DSP targets. The next
table presents the blocks you should not use in your target models.

Block Name/Category Library

Scope Simulink, Signal Processing Blockset

To Workspace Simulink

From Workspace Simulink

Spectrum Scope Signal Processing Blockset

To File Simulink

From File Simulink

Triggered to Workspace Signal Processing Blockset

Signal To Workspace Signal Processing Blockset

Signal From Workspace Signal Processing Blockset

Triggered Signal From
Workspace

Signal Processing Blockset

To Wave Device Signal Processing Blockset

From Wave Dvice Signal Processing Blockset

To Wave File Signal Processing Blockset

From Wave File Signal Processing Blockset

1 Getting Started

1-14

S-Function Builder Blocks
Simulink S-Function Builder can be used to create and add new blocks to your
model. When you generate code for your model, related source code files are
added to your Code Composer Studio project.

Setting Simulation Configuration Parameters
To set the simulation parameters manually, with your model open, select
Configuration Parameters from the Simation option. From this dialog, select
Real-Time Workshop. You must specify the appropriate version of the system
target file and template makefile. For the Embedded Target for the TI
TMS320C2000™ DSP Platform, in the Real-Time Workshop pane of the
dialog, specify

ti_C2000_grt.tlc

or, optionally, select

ti_C2000_ert.tlc

to select the correct target file or click Browse and select from the list of
targets. The associated template filename is automatically filled in.

A Generic Real-Time (GRT) target is the target configuration that generates
model code for a real-time system as if the resulting code was going to be
executed on your workstation. An Embedded Real-Time (ERT) target is the
target configuration that generates model code for execution on an
independent embedded real-time system. This option requires Real-Time
Workshop Embedded Coder.

You must also specify discrete time by selecting Fixed-step and discrete (no
continuous states) from the Solver panel of the Configuration Parameters
dialog.

When you drag a Target Preferences block into your model, you are given the
option to set basic simulation parameters automatically. Note that this option
does not appear if the Configuration Parameters dialog is open when you
drag the Target Preferences block into the model.

Overview of Creating Models for Targeting

1-15

Building Your Model
With this configuration, you can generate a real-time executable and download
it your TI development board by clicking Build on the Real-Time Workshop
pane. Real-Time Workshop automatically generates C code and inserts the I/O
device drivers as specified by the hardware blocks in your block diagram, if
any. These device drivers are inserted in the generated C code as inlined
S-functions. For information about inlining S-functions, refer to your target
language compiler documentation. For a complete discussion of S-functions,
refer to your documentation about writing S-functions.

Note To build, load, and run code successfully on your target board,
MATLAB must be able to locate that board in your system configuration.
Make sure that the Board Name in your Code Composer Studio setup and the
DSPBoardLabel in the Target Preference Block in your model match exactly.

During the same build operation, block parameter dialog entries are combined
into a project file for CCS for your TI C2000 board. If you selected the Build
and execute build action in the Target Preferences block, your makefile
invokes the TI cross-compiler to build an executable file that is automatically
downloaded via the parallel port to your target. After downloading the
executable file to the target, the build process runs the file on the board’s DSP.

Note After using the runtime Build option to generate and build code for
your application, you must perform the following reset sequence before you
can run that code on your board. If you want to rerun your application
manually once it has been generated, you must also use this procedure.

F2812 eZdsp Reset Sequence

1 Reset the board CPU.

2 Load your code onto the target.

3 Run your code on the target.

1 Getting Started

1-16

LF2407 eZdsp Reset Sequence

1 Load your code onto the target.

2 Reset the board CPU.

3 Run your code on the target.

Using the c2000lib Blockset

1-17

Using the c2000lib Blockset
This section uses an example to demonstrate how to create a Simulink model
that uses the Embedded Target for TI C2000 DSP blocks to target your board.
The example creates a model that performs PWM duty cycle control via pulse
width change. It uses the C2812 ADC block to sample an analog voltage and
the C2812 PWM block to generate a pulse waveform. The analog voltage
controls the duty cycle of the PWM and you can observe the duty cycle change
on the oscilloscope. This model is also provided in the Demos library. Note that
the model in the Demos library also includes a model simulation.

Hardware Setup
The following hardware is needed for this example:

• Spectrum Digital eZdsp F2812

• Function generator

• Oscilloscope and probes

Connect the hardware as follows:

1 Connect the function generator output to the ADC input ADCINA0 on the
eZdsp F2812.

2 Connect the output of PWM1 on the eZdsp F2812 to the analog input of the
oscilloscope.

Starting the c2000lib Library
At the MATLAB prompt, type

c2000lib

to open the c2000lib library blockset, which contains libraries of blocks
designed for targeting your board.

1 Getting Started

1-18

The libraries are in three groups, plus Info and Demos blocks:

General

• C2000 Target Preferences (c2000tgtpreflib) — Blocks to specify target
preferences and options. You do not connect this block to any other block in
your model.

• Host-side CAN Blocks (c2000canlib) — Blocks to configure CAN message
blocks and Vector CAN driver blocks

• C2800 RTDX Instrumentation (rtdxBlocks) — Blocks for adding RTDX
communications channels to Simulink models. See the tutorial in the Link
for Code Composer Studio Development Tools documentation for an example
of using these blocks.

Using the c2000lib Blockset

1-19

Chip Support

• C2800 DSP Core Support (c2800dsplib) — Blocks to configure the codec on
the F2812 eZdsp DSK or on the F2812 DSP

• C2400 DSP Core Support (c2400dsplib) — Blocks to configure the codec on
the LF2407 eZdsp DSK or on the LF2407 DSP

Optimized Libraries
• C28x DMC Library (c28xdmclib) — Fixed-point math blocks for digital

motor control with C28x DSPs

• C28x IQMath Library (tiiqmathlib) — Fixed-point math blocks for use with
C28x targets

Other Blocks

• Info block — Online help

• Demos block — Demos window

For more information on the blocks in each library, refer to their reference
pages.

1 Getting Started

1-20

Setting Up the Model
Preliminary tasks for setting up a new model include adding a Target
Preferences block, setting or verifying Target Preferences, and setting the
simulation parameters.

1 Select New from the File menu to create a new Simulink model.

2 Double-click the C2000 Target Preferences library in c2000lib to open it.

3 Drag the F2812 eZdsp block into your new model.

The following dialog appears, asking if you want preferences to be set
automatically.

4 Click Yes to allow automatic setup. The following Simulation ->
Configuration Parameters are set:

 Panel Field Setting

Solver Stop time inf

Solver Type Fixed-step
discrete

F2812 eZdsp

Using the c2000lib Blockset

1-21

Note Generated code does not honor Simulink stop time from simulation.
Stop time is interpreted as inf. To implement a stop in generated code, you
must put a Stop block in your model.

The default Target configuration - System target file is
ti_c2000.grt.tlc because you need to purchase and install the optional
Real-Time Workshop Embedded Coder to use the ti_c2000_ert.tlc.

Note One Target Preference block must be in each target model at the top
level. It does not connect to any other blocks, but stands alone to set the target
preferences for the model.

5 Select Configuration Parameters from the Simulation menu to verify and
set the simulation parameters for this model. Parameters you set in this
dialog belong to the model you are building. They are saved with the model
and stored in the model file. Refer to your Simulink documentation for
information on the Configuration Parameters dialog.

Data
Import/Export

Save to workspace - Time off

Data
Import/Export

Save to workspace - Output off

Hardware
Implementation

Device type TI C2000

Real-Time
Workshop

Target configuration - System
target file

ti_c2000_grt.tlc

Real-Time
Workshop

Target configuration -
Template makefile

ti_c2000_grt.tmf

 Panel Field Setting

1 Getting Started

1-22

6 Use the Real-Time Workshop pane of the Configuration Parameters
dialog to set options for the real-time model. Refer to your Real-Time
Workshop documentation for detailed information on the Real-Time
Workshop pane options.

• RTW system target file. Clicking Browse opens the Target File Browser
where you select ti_c2000_grt.tlc or ti_c2000_ert.tlc. When you select
your target configuration, Real-Time Workshop chooses the appropriate
system target file, template makefile, and make command. You can also enter
the target configuration filename, and Real-Time Workshop will fill in the
Template makefile and Make command selections.

• Make command. When you generate code from your digital signal
processing application, use the standard command make_rtw as the Make
command. On Configuration in the Target configuration category, enter
make_rtw for the Make command.

Using the c2000lib Blockset

1-23

• Template makefile. Set the Template makefile option to
ti_c2000_grt.tmf or ti_c2000_ert.tmf when you build your application for
the C2000 target. If the template makefile shown in the option is not the one
for the selected System target file, click Browse to open the list of available
system target files and select the correct file from the list. Real-Time
Workshop then selects the appropriate template makefile.

• Generate code only. This option does not apply to targeting with the
Embedded Target for TI C2000 DSP. To generate source code without
building and executing the code on your target, in the Target Preference
BuildOptions — RunTimeOptions for BuildAction, select Generate code
only.

For all other Real-Time Workshop options, leave the default values for this
example.

1 Getting Started

1-24

7 Set the Target Preferences by double-clicking on the F2812 eZdsp block and
adjust these parameters. For descriptions of these fields, see the F2812
eZdsp reference page.

Build Options

Subfield Field Setting

Compiler Options CompilerVerbosity Verbose

KeepASMFiles False

OptimizationLevel Function(-o2)

SymbolicDebugging Yes

Linker Options CreateMAPFile True

KeepOBJFiles True

LinkerCMDFile Full_memory_map

RunTime Options BuildAction Build_and_execute

OverrunAction Continue

CCSLink Options

Field Setting

CCSHandleName CCS_Obj

ExportCCSHandle True

CodeGeneration Options

Subfield Field Setting

Scheduler Timer CPU_timer0

TimerClockPrescaler 1

Using the c2000lib Blockset

1-25

Note If the board label in your Code Composer Studio setup is different than
the default DSP Board Label shown in the Target Preferences block, you can
change the default setting. This would assure that whenever you drag a
Target Preferences block into a new model, the DSP Board Label of your
model will match the label in your Code Composer Studio setup.

Open the C2000 Target Preferences library. Double-click on the approprate
Target Preferences block. Click on DSP Board and change the text in the DSP
Board Label right column to the desired string. Click OK to close the Target
Preferences block and then close the library to save your change.

DSPBoard Options

Subfield Field Setting

DSP Board Label DSPBoardLabel F2812 PP Emulator
(see Note below)

DSP Chip DSPChipLabel TI TMS320C2812

eCAN BitRatePrescaler 10

EnhancedCANMode True

SAM Sample_one_time

SBJ Only_falling_edges

SJW 2

SelfTestMode False

TSEG1 8

TSEG2 6

1 Getting Started

1-26

Adding Blocks to the Model

1 Double-click the C2800 DSP Chip Support Library to open it.

2 Drag the C28x ADC block into your model. Double-click the ADC block in the
model and set the Sample time to 64/80000. Use the default values for all
other fields. Refer to the C28x ADC reference page for information on these
fields.

Using the c2000lib Blockset

1-27

3 Drag the C28x PWM block into your model. Double-click the PWM block in
the model and set the following parameters. Refer to the C28x PWM
reference page for information on these fields.

4 Type Simulink at the MATLAB command line to start the Simulink
Library browser. Drag a Gain block from the Math Operations library into
your model. Double-click on the Gain block in the model and set the
following parameters

Field Parameter

Module A

Waveform period source Specify via dialog

Waveform period 64000

Waveform type Asymmetric

Enable PWM1/PWM2 selected

Pulse width source Input port

PWM1 control logic Active high

PWM2 control logic Active low

Use deadband for PWM1/PWM2 selected

Deadband prescaler 16

Deadband period 12

ADC start event Period interrupt

1 Getting Started

1-28

.

Field Parameter

Gain 30

Multiplication Element-wise(K.*u)

Sample time -1

Output data type mode Specify via dialog

Output data type uint(16)

Round integer calculations toward Floor

Parameter data type mode Same as input

Using the c2000lib Blockset

1-29

5 Connect the ADC block to the Gain block and the Gain block to the PWM
block as shown.

Generating Code from the Model
This section summarizes how to generate code from your real-time model. For
details about generating code from models in Real-Time Workshop, refer to
your Real-Time Workshop documentation.

You start the automatic code generation process from the Simulink model
window by clicking Build in the Real-Time Workshop pane of the
Configuration Parameters dialog. Other ways of starting the code generation
process are by using the Build all button on the toolbar of your model, or by
using the keyboard shortcut, Ctrl+B, while your model is open and in focus.

The code building process consists of these tasks:

1 Real-Time Workshop invokes the function make_rtw to start the Real-Time
Workshop build procedure for a block diagram. make_rtw invokes the Target
Language Compiler to generate the code and then invokes the
language-specific make procedure.

2 gmake builds file modelname.out. Depending on the build options you select
in the Simulation Parameters dialog, gmake can initiate the sequence that
downloads and executes the model on your TI target board.

1 Getting Started

1-30

Creating Code Composer Studio Projects Without
Loading
To create projects in CCS without loading files to your target, follow these
steps:

1 In the Real-Time Workshop pane in the Simulation Parameters dialog,
select ti_c2000.tlc as the system target file.

2 Select Create_CCS_Project for the BuildAction in the Target Preferences
block. Note that the Build and Build_and_execute options create CCS
projects as well.

3 Set the other Target Preferences options, including those for CCSLink. On
the Real-Time Workshop pane of the Simulation Parameters dialog, click
Build to build your new CCS project.

Real-Time Workshop and the Embedded Target for TI C2000 DSP generate
all the files for your project in CCS and create a new project in the IDE. Your
new project is named for the model you built.

In CCS you see your project with the files in place in the directory tree.

2
Using the IQmath Library

About the IQmath Library (p. 2-2) Introduces the IQmath Library

Fixed-Point Numbers (p. 2-4) Representation of fixed-point numbers in the
IQmath Library

Building Models (p. 2-9) Issues to consider when you build models with the
IQmath Library

2 Using the IQmath Library

2-2

About the IQmath Library
The IQmath Library provides blocks that perform processor-optimized,
fixed-point mathematical operations. The blocks in the C28x IQmath Library
correspond to functions in the Texas Instruments C28x IQmath Library
assembly-code library, which target the TI C28x family of digital signal
processors.

Note The implementation of this library for the TI C28x processor produces
the same simulation and code-generation output as the TI version of this
library, but it does not use a global Q value, as does the TI version. The Q
format is dynamically adjusted based on the Q format of the input data.

The IQmath Library blocks generally input and output fixed-point data types
and use numbers in Q format. The C28x IQmath Library block reference pages
discuss the data types accepted and produced by each block in the library. For
more information on fixed-point numbers and Q format, see

• “Fixed-Point Numbers” on page 2-4. In addition, see the Simulink Fixed
Point documentation, which includes more information on fixed-point data
types and scaling and precision issues.

• “Q Format Notation” on page 2-5

You can use these blocks with some core Simulink blocks and Simulink Fixed
Point blocks to run simulations in Simulink models before generating code.
Once you develop your model, you can invoke Real-Time Workshop to generate
equivalent code that is optimized to run on a TI C28x DSP. During code
generation, a call is made to the IQmath Library for each IQmath Library block
in your model to create target-optimized code. To learn more about creating
models that include both IQmath Library blocks and blocks from other
blocksets, refer to “Building Models” on page 2-9.

About the IQmath Library

2-3

Common Characteristics
The following characteristics are common to all IQmath Library blocks:

• Sample times are inherited from driving blocks.

• Blocks are single rate.

• Parameters are not tunable.

• All blocks support discrete sample times.

To learn more about characteristics particular to each block in the library, refer
to the “Block Reference” pages.

2 Using the IQmath Library

2-4

Fixed-Point Numbers
In digital hardware, numbers are stored in binary words. A binary word is a
fixed-length sequence of binary digits (1’s and 0’s). How hardware components
or software functions interpret this sequence of 1’s and 0’s is defined by the
data type.

Binary numbers are used to represent either fixed-point or floating-point data
types. A fixed-point data type is characterized by the word size in bits, the
binary point, and whether it is signed or unsigned. The position of the binary
point is the means by which fixed-point values are scaled and interpreted.

For example, a binary representation of a fractional fixed-point number (either
signed or unsigned) is shown below.

where

• is the ith binary digit.

• is the word size in bits.

• is the location of the most significant (highest) bit (MSB).

• is the location of the least significant (lowest) bit (LSB).

• The binary point is shown four places to the left of the LSB. In this example,
therefore, the number is said to have four fractional bits, or a fraction length
of four.

Signed Fixed-Point Numbers
Signed binary fixed-point numbers are typically represented in one of three
ways:

• Sign/magnitude

• One’s complement

• Two’s complement

•
… b0b1bws 2– b5 b3b4 b2bws 1–

MSB LSB

Binary point

bi

ws

bws 1–

b0

Fixed-Point Numbers

2-5

Two’s complement is the most common representation of signed fixed-point
numbers and is used by TI digital signal processors.

Negation using signed two’s complement representation consists of a bit
inversion (translation into one’s complement) followed by the binary addition
of a 1. For example, the two’s complement of 000101 is 111011, as follows:

000101 ->111010 (bit inversion) ->111011 (binary addition of a 1 to the LSB)

Q Format Notation
The position of the binary point in a fixed-point number determines how you
interpret the scaling of the number. When it performs basic arithmetic such as
addition or subtraction, hardware uses the same logic circuits regardless of the
value of the scale factor. In essence, the logic circuits have no knowledge of
a binary point. They perform signed or unsigned integer arithmetic — as if the
binary point is to the right of b0. Therefore, you determine the binary point.

In the IQmath Library, the position of the binary point in the signed,
fixed-point data types is expressed in and designated by Q format notation.
This fixed-point notation takes the form

Qm.n

where

• designates that the number is in Q format notation — the Texas
Instruments representation for signed fixed-point numbers.

• is the number of bits used to designate the two’s complement integer
portion of the number.

• is the number of bits used to designate the two’s complement fractional
portion of the number, or the number of bits to the right of the binary point.

In Q format, the most significant bit is always designated as the sign bit.
Representing a signed fixed-point data type in Q format always requires
m+n+1 bits to account for the sign.

Note The range and resolution varies for different Q formats. For specific
details, see Section 3.2 in the Texas Insturments C28x Foundation Software,
IQmath Library Module User’s Guide.

Q

m

n

2 Using the IQmath Library

2-6

When converting from Q format to floating-point format, the accuracy of the
conversion depends on the values and formats of the numbers. For example,
for single-precision floating-point numbers, which use 24 bits, the resolution of
the corresponding 32-bit number cannot be attained. The 24-bit number
approximates its value by truncating the lower end. For example,

32-bit integer 11110000110011001010101000001111
Single-precision float +1.11100001100110010101010x 231
Corresponding value 11110000110011001010101000000000

Example — Q.15
For example, a signed 16-bit number with n = 15 bits to the right of the binary
point is expressed as

Q0.15

in this notation. This is (1 sign bit) + (m = 0 integer bits) + (n = 15 fractional
bits) = 16 bits total in the data type. In Q format notation, the m = 0 is often
implied, as in

Q.15

In Simulink Fixed Point, this data type is expressed as

sfrac16

or

sfix16_En15

In the Filter Design Toolbox, this data type is expressed as

[16 15]

Example — Q1.30
Multiplying two Q.15 numbers yields a product that is a signed 32-bit data type
with n = 30 bits to the right of the binary point. One bit is the designated sign
bit, thereby forcing m to be 1:

m+n+1 = 1+30+1 = 32 bits total

Therefore, this number is expressed as

Fixed-Point Numbers

2-7

Q1.30

In Simulink Fixed Point, this data type is expressed as

sfix32_En30

In the Filter Design Toolbox, this data type is expressed as

[32 30]

Example — Q-2.17
Consider a signed 16-bit number with a scaling of 2(-17). This requires n = 17
bits to the right of the binary point, meaning that the most significant bit is
a sign-extended bit.

Sign extension fills additional bits with the value of the MSB. For example,
consider a 4-bit two's complement number 1011. When this number is extended
to 7 bits with sign extension, the number becomes 1111101 and the value of the
number remains the same.

One bit is the designated sign bit, forcing m to be -2:

m+n+1 = -2+17+1 = 16 bits total

Therefore, this number is expressed as

Q-2.17

In Simulink Fixed Point, this data type is expressed as

sfix16_En17

In the Filter Design Toolbox, this data type is expressed as

[16 17]

Example — Q17.-2
Consider a signed 16-bit number with a scaling of 2^(2) or 4. This means that
the binary point is implied to be 2 bits to the right of the 16 bits, or that there
are n = -2 bits to the right of the binary point. One bit must be the sign bit,
thereby forcing m to be 17:

m+n+1 = 17+(-2)+1 = 16

Therefore, this number is expressed as

2 Using the IQmath Library

2-8

Q17.-2

In Simulink Fixed Point, this data type is expressed as

sfix16_E2

In the Filter Design Toolbox, this data type is expressed as

[16 -2]

Building Models

2-9

Building Models
You can use IQmath Library blocks in models along with certain core
Simulink, Simulink Fixed Point, and other blockset blocks. This section
discusses issues you should consider when building a model with blocks from
these different libraries.

Converting Data Types
As always, it is vital to make sure that any blocks you connect in a model have
compatible input and output data types. In most cases, IQmath Library blocks
handle only a limited number of specific data types. You can refer to any block
reference page in “Block Reference” for a discussion of the data types that the
block accepts and produces.

When you connect IQmath Library blocks and Simulink Fixed Point blocks,
you often need to set the data type and scaling in the block parameters of the
Simulink Fixed Point block to match the data type of the IQmath Library
block. Many Simulink Fixed Point blocks allow you to set their data type and
scaling through inheritance from the driving block, or through
backpropagation from the next block. This can be a good way to set the data
type of a Simulink Fixed Point block to match a connected IQmath Library
block.

Some Signal Processing Blockset blocks and core Simulink blocks also accept
fixed-point data types. Make the appropriate settings in these blocks’
parameters when you connect them to an IQmath Library block.

Using Sources and Sinks
The IQmath Library does not include source or sink blocks. Use source or sink
blocks from the core Simulink library or Simulink Fixed Point in your models
with IQmath Library blocks.

Choosing Blocks to Optimize Code
In some cases, blocks that perform similar functions appear in more than one
blockset. For example, both the IQmath Library and Simulink Fixed Point
have a Multiply block. When you are building a model to run on C2000 DSP,
choosing the block from the IQmath Library always yields better optimized
code. You can use a similar block from another library if it gives you

2 Using the IQmath Library

2-10

functionality that the IQmath Library block does not support, but you will
generate code that is less optimized.

3
Block Reference

Blocks — Categorical List (p. 3-2) Provides tables that list each block in the Embedded
Target for C2000 DSP by library

Blocks — Alphabetical List (p. 3-8) Lists each block in the Embedded Target for C2000 DSP
in alphabetical order

3 Block Reference

3-2

Blocks — Categorical List
This section contains brief descriptions of all blocks in the Embedded Target
for the TI TMS320C2000 DSP Platform arranged by category.

“C2000 Target Preferences Library (c2000tgtpreflib)”

“Host-side CAN Blocks (c2000canlib)”

“C2000 RTDX Instrumentation Library (rtdxBlocks)”

“C2800 DSP Chip Support Library (c2800dspchiplib)”

“C2400 DSP Chip Support Library (c2400dspchiplib)”

“C28x Digital Motor Control Library (c28xdmclib)”

“C28x IQmath Library (tiiqmathlib)”

C2000 Target Preferences Library (c2000tgtpreflib)
F2812 eZdsp F2812 eZdsp DSK target preferences

LF2407 eZdsp LF2407 eZdsp DSK target preferences

Blocks — Categorical List

3-3

Host-side CAN Blocks (c2000canlib)
Refer to the CAN Blockset documentation for information on these blocks.

C2000 RTDX Instrumentation Library (rtdxBlocks)

Vector CAN Configuration Configure a CAN channel (either hardware or
virtual) for use with Vector-Informatik
drivers

Vector CAN Receive Read CAN frames from a Vector CAN
channel

Vector CAN Transmit Transmit CAN frames on a Vector CAN
channel

CAN Message Packing Map Simulink signals to CAN messages.

CAN Message Packing
(CANdb)

Pack Simulink signals into CAN messages
defined by CANdb

CAN Message Filter Dispatch message processing based on
message ID

CAN Message Unpacking Inspect and unpack the individual fields in a
CAN message

CAN Message Unpacking
(CANdb)

Decompose a CAN frame into its constituent
signals

From RTDX RTDX communication channel for sending
data from MATLAB to the target

To RTDX RTDX communication channel for sending
data from the target to MATLAB

3 Block Reference

3-4

C2800 DSP Chip Support Library (c2800dspchiplib)
C28x ADC Analog-to-digital converters (ADC)

C28x CAP Receive and log capture input pin transitions

C28x eCAN Receive Enhanced Control Area Network receive
mailbox

C28x eCAN Transmit Enhanced Control Area Network transmit
mailbox

C28x GPIO Digital Input General-purpose I/O pins for digital input

C28x GPIO Digital Output General-purpose I/O pins for digital output

C28x PWM Pulse wave modulators (PWMs)

C28x QEP Quadrature encoder pulse circuit

C28x SCI Receive Serial communications interface receive

C28x SCI Transmit Serial communications interface transmit

C28x SPI Receive Serial peripheral interface receive

C28x SPI Transmit Serial peripheral interface transmit

From Memory Retrieve data from target memory

To Memory Write data to target memory

Blocks — Categorical List

3-5

C2400 DSP Chip Support Library (c2400dspchiplib)
C24x ADC Analog-to-digital converter (ADC)

C24x CAN Receive Enhanced Control Area Network receive
mailbox

C24x CAN Transmit Enhanced Control Area Network transmit
mailbox

C24x CAP Receive and log capture input pin transitions

C24x GPIO Digital Input General-purpose I/O pins for digital input

C24x GPIO Digital Output General-purpose I/O pins for digital output

C24x PWM Pulse wave modulators (PWMs)

C24x QEP Quadrature encoder pulse circuit

C24x SCI Receive Serial communications interface receive

C24x SCI Transmit Serial communications interface transmit

C24x SPI Receive Serial peripheral interface receive

C24x SPI Transmit Serial peripheral interface transmit

From Memory Retrieve data from target memory

To Memory Write data to target memory

3 Block Reference

3-6

C28x Digital Motor Control Library (c28xdmclib)
Clarke Transformation Convert balanced three-phase quantities to

balanced two-phase quadrature quantities

Inverse Park Transformation Convert rotating reference frame vectors to
two-phase stationary reference frame

Park Transformation Convert two-phase stationary system vectors
to rotating system vectors

PID Controller Digital PID controller

Ramp Control Create ramp up and ramp down function

Ramp Generator Generate ramp output

Space Vector Generator Duty ratios for stator reference voltage

Speed Measurement Motor speed

Blocks — Categorical List

3-7

C28x IQmath Library (tiiqmathlib)
Absolute IQN Absolute value

Arctangent IQN Four-quadrant arc tangent

Division IQN Divide two IQ numbers

Float to IQN Convert floating-point number to IQ number

Fractional part IQN Fractional part of IQ number

Fractional part IQN x int32 Fractional part of result of multiplying IQ
number and long integer

Integer part IQN Integer part of IQ number

Integer part IQN x int32 Integer part of result of multiplying IQ
number and long integer

IQN to Float Convert IQ number to floating-point number

IQN x int32 Multiply IQ number and long integer

IQN x IQN Multiply two IQ numbers with same Q
format

IQN1 to IQN2 Convert IQ number to different Q format

IQN1 x IQN2 Multiply two IQ numbers with different Q
formats

Magnitude IQN Magnitude of two orthogonal IQ numbers

Saturate IQN Saturate an IQ number

Square Root IQN Square root or inverse square root of IQ
number

Trig Fcn IQN Sine, cosine, or tangent of IQ number

3 Block Reference

3-8

Blocks — Alphabetical List 3

This section contains block reference pages listed alphabetically.

Absolute IQN

3-9

3 Absolute IQNPurpose Absolute value

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block computes the absolute value of an IQ number input. The output is
also an IQ number.

Note The implementation of this block does not call the corresponding Texas
Instruments library function during code generation. The TI function uses a
global Q setting and the MathWorks code used by this block dynamically
adjusts the Q format based on the block input. See “About the
IQmath Library” on page 2-2 for more information.

Dialog Box

See Also Arctangent IQN, Division IQN, Float to IQN, Fractional part IQN, Fractional
part IQN x int32, Integer part IQN, Integer part IQN x int32, IQN to Float,
IQN x int32, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2, Magnitude IQN,
Saturate IQN, Square Root IQN, Trig Fcn IQN

A Y

IQNabs

IQmath

Absolute IQN

Arctangent IQN

3-10

3Arctangent IQNPurpose Four-quadrant arc tangent

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block computes the four-quadrant arc tangent of the IQ number inputs
and produces IQ number output.

Note The implementation of this block does not call the corresponding Texas
Instruments library function during code generation. The TI function uses a
global Q setting and the MathWorks code used by this block dynamically
adjusts the Q format based on the block input. See “About the
IQmath Library” on page 2-2 for more information.

Dialog Box

Function
 Type of arc tangent to calculate, either

- atan2 — Compute the four-quadrant arc tangent with output in radians
with values between -pi and +pi.

- atan2PU — Compute the four-quadrant arc tangent per unit. If
atan2(B,A) is greater than or equal to zero, atan2PU(B,A) =
atan2(B,A)/2*pi. Otherwise, atan2PU(B,A) = atan2(B,A)/2*pi+1. The
output is in per-unit radians with values from 0 to 2pi radians.

A

B
Y

IQNatan2

IQmath

Arctangent IQN

Arctangent IQN

3-11

See Also Absolute IQN, Division IQN, Float to IQN, Fractional part IQN, Fractional
part IQN x int32, Integer part IQN, Integer part IQN x int32, IQN to Float,
IQN x int32, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2, Magnitude IQN,
Saturate IQN, Square Root IQN, Trig Fcn IQN

C24x ADC

3-12

3C24x ADCPurpose Analog-to-digital converter (ADC)

Library c2400dspchiplib in Embedded Target for TI C2000 DSP

Description The C24x ADC block configures the C24x ADC to perform analog-to-digital
conversion of signals connected to the selected ADC input pins. The ADC block
outputs digital values representing the analog input signal and stores the
converted values in the result register of your digital signal processor. You use
this block to capture and digitize analog signals from external sources such as
signal generators, frequency generators, or audio devices.

Triggering
The C24x ADC trigger mode depends on the internal setting of the Source
Start-of-Conversion (SOC) signal. The ADC is usually triggered by software at
the sample time intervals specified in the ADC block — this is unsyn chronized
mode.

In synchronized mode, the Event (EV) Manager associated with the same
module as the ADC triggers the ADC. In this case, the ADC is synchronized
with the pulse width modulator (PWM) waveforms generated by the same EV
unit via the ADC Start Event signal setting. The ADC Start Event is set in the
C24x PWM block. See that block for information on the settings.

Note The ADC cannot be synchronized with the PWM if the ADC is in
cascaded mode (see below).

Output
The output of the C24x ADC is a vector of uint16 values. The output values
are in the range 0 to 1023 because the C24x ADC is a 10-bit converter.

Modes
The C24x ADC block supports ADC sequential operation in dual and cascaded
modes. In dual mode, either Module A or Module B can be used for the ADC
block, and two ADC blocks are allowed in the model. In cascaded mode, both
Module A and Module B are used for a single ADC block.

C24x ADC

C24x ADC

C24x ADC

3-13

Dialog Box ADC Control Panel

Module
Specifies which DSP module to use.

- A — Enables the ADC channels in module A (ADCINA0 through
ADCINA7)

- B — Enables the ADC channels in module B (ADCINB0 through
ADCINB7)

- A and B — Enables the ADC channels in both modules A and B
(ADCINA0 through ADCINA7 and ADCINB0 through ADCINB7).

Start of conversion
Type of signal that triggers sequntial conversions to begin:

- Software — Signal from software

- EVA — Signal from event manager A

- EVB — Signal from event manager B

- External pin— Signal from external hardware

Sample time
Time in seconds between consecutive sets of samples that are converted for
the selected ADC channel(s). This is the rate at which values are read from

C24x ADC

3-14

the result registers. See “Scheduling and Timing” on page 1-10 for more
information on timing.

To set different sample times for different groups of ADC channels, you
must add separate C24x ADC blocks to your model and set the desired
sample times for each block.

Data type
Date type of the output data. Valid data types are auto, double, single,
int8, uint8, int16, uint16, int32, or uint32.

Input Channels Panel

Number of conversions
Number of analog-to-digital conversions to perfrom in a single sampling
sequence.

Conversion no.
Specific ADC channel to associate with each conversion number. In
simultaneous mode, a pair of ADC channels is associated with each
conversion. In oversampling mode, a signal at a given ADC channel can be
sampled multiple times during a single conversion sequence. To
oversample, specify the same channel for more than one conversion.

C24x ADC

3-15

Use multiple output ports
If more than one ADC channel is used for conversion, you can use separate
ports for each output and show the output ports on the block. If you use
more than one channel and do not use multiple output ports, the data is
output in a single vector.

Note The Discrete Filter block in Simulink accepts only mono input. To
connect a C24x ADC block to this block, you must output a single channel or
connect only one of the ADCs output ports to a Discrete Filter block.

See Also C24x PWM

C24x CAN Receive

3-16

3C24x CAN ReceivePurpose Enhanced Control Area Network receive mailbox

Library c2400dspchiplib in Embedded Target for TI C2000 DSP

Description The C24x Control Area Network (CAN) Receive block generates source code for
receiving CAN messages through a CAN mailbox. The CAN module on the DSP
chip provides serial communication capability and has six mailboxes — two
for receive, two for transmit, and two configurable for receive or transmit. The
C24x supports CAN data frames in standard or extended format.

The C24x CAN Receive block has up to two and, optionally, three output ports.

• The first output port is the function call port, and a function call subsystem
should be connected to this port. When a new message is received, this
subsystem is executed.

• The second output port is the message data port. The received data is output
in the form of a vector of elements of the selected data type. (See Data type
below for information.)

• The third output port is optional and appears only if Output message length
is selected.

Mailbox: 0
C24x CAN

Receive

f()

MsgMsgMsg

C24x CAN Receive

C24x CAN Receive

3-17

Dialog Box

Mailbox number
Unique number between 0 and 5 that refers to a mailbox area in RAM.
Mailboxes 0 and 1 are receive mailboxes, 2 and 3 are configurable for
receive or transmit, and 4 and 5 are transmit mailboxes. In standard data
frame mode, the mailbox number determines priority.

Message identifier
Identifier of length 11 bits for standard frame size or length 29 bits for
extended frame size in decimal, binary, or hex. If in binary or hex, use
bin2dec(' ') or hex2dec(' '), respectively, to convert the entry. The
message identifier is associated with a receive mailbox. Only messages that
match the mailbox message identifier are accepted into it.

Message type
Select Standard (11-bit identifier) or Extended (29-bit
identifier).

C24x CAN Receive

3-18

Sample time
Frequency with which the mailbox is polled to determine if a new message
has been received. A new message causes a function call to be emitted from
the mailbox.

Data type
Type of data in the data vector. The length of the vector for the received
message is at most 8 bytes. If the message is less than 8 bytes, the data
buffer bytes are right-aligned in the output. Only uint16 (vector length = 4
elements) or unit32 (vector length = 8 elements) data are allowed. The data
are unpacked as follows using the data buffer, which is 8 bytes.

For uint16 data,

Output[0] = data_buffer[1..0];
Output[1] = data_buffer[3..2];
Output[2] = data_buffer[5..4];
Output[3] = data_buffer[7..6];

For unit32 data,

Output[0] = data_buffer[3..0];
Output[1] = data_buffer[7..4];

For example, if the received message has two bytes:

data_buffer[0] = 0x21
data_buffer[1] = 0x43

then the unit16 output would be:

Output[0] = 0x4321
Output[1] = 0x0000
Output[2] = 0x0000
Output[3] = 0x0000

Output message length
Select to output the message length in bytes to the third output port. If not
selected, the block has only two output ports.

References Detailed information on the CAN module is in the TMS320LF/LC240xA DSP
Controller Reference Guide — System and Peripherals, Literature Number
SPRU357B, available at the Texas Instruments Web site.

C24x CAN Receive

3-19

See Also C24x CAN Transmit

C24x CAN Transmit

3-20

3C24x CAN TransmitPurpose Enhanced Control Area Network transmit mailbox

Library c2400dspchiplib in Embedded Target for TI C2000 DSP

Description The C24x Control Area Network (CAN) Transmit block generates source code
for transmitting CAN messages through a CAN mailbox. The CAN module on
the DSP chip provides serial communication capability and has six mailboxes
— two for receive, two for transmit, and two configurable for receive or
transmit. The C24x supports CAN data frames in standard or extended format.

Data Vectors
The length of the vector for each transmitted mailbox message is 8 bytes. Input
data are always right-aligned in the message data buffer. Only uint16 (vector
length = 4 elements) or unit32 (vector length = 8 elements) data are accepted.
The following examples show how the different types of input data are aligned
in the data buffer

For input of type uint32,

inputdata [0] = 0x12345678

the data buffer is:

data buffer[0] = 0x78
data buffer[1] = 0x56
data buffer[2] = 0x34
data buffer[3] = 0x12
data buffer[4] = 0x00
data buffer[5] = 0x00
data buffer[6] = 0x00
data buffer[7] = 0x00

For input of type uint16,

inputdata [0] = 0x1234

the data buffer is:

data buffer[0] = 0x34
data buffer[1] = 0x12
data buffer[2] = 0x00
data buffer[3] = 0x00

Mailbox: 5
C24x CAN
Transmit

Msg

C24x CAN Transmit

C24x CAN Transmit

3-21

data buffer[4] = 0x00
data buffer[5] = 0x00
data buffer[6] = 0x00
data buffer[7] = 0x00

For input of type uint16[2], which is a two-element vector,

inputdata [0] = 0x1234
inputdata [1] = 0x5678

the data buffer is:

data buffer[0] = 0x34
data buffer[1] = 0x12
data buffer[2] = 0x78
data buffer[3] = 0x56
data buffer[4] = 0x00
data buffer[5] = 0x00
data buffer[6] = 0x00
data buffer[7] = 0x00

Dialog Box

Mailbox number
Unique number between 0 and 5 that refers to a mailbox area in RAM.
Mailboxes 0 and 1 are receive mailboxes, 2 and 3 are configurable for

C24x CAN Transmit

3-22

receive or transmit, and 4 and 5 are transmit mailboxes. In standard data
frame mode, the mailbox number determines priority.

Message identifier
Identifier of length 11 bits for standard frame size or length 29 bits for
extended frame size in decimal, binary, or hex. If in binary or hex, use
bin2dec(' ') or hex2dec(' '), respectively, to convert the entry. The
message identifier is coded into a message that is sent to the CAN bus.

Message type
Select Standard (11-bit identifier) or Extended (29-bit
identifier).

Enable blocking mode
If this parameter is checked, the CAN block code waits indefinitely for a
transmit (XMT) acknowledge. If this parameter is not checked, the CAN
block code does not wait for a transmit (XMT) acknowledge, which is useful
when the hardware might fail to acknowledge transmissions.

References Detailed information on the CAN module is in the TMS320LF/LC240xA DSP
Controller Reference Guide — System and Peripherals, Literature Number
SPRU357B, available at the Texas Instruments Web site.

See Also C24x CAN Receive

C24x CAP

3-23

3C24x CAPPurpose Receive and log capture input pin transitions

Library c2400dspchiplib in Embedded Target for TI C2000 DSP

Description The C24x CAP block sets parameters for the capture units (CAPs) of the event
manager (EV) module. The capture units log transitions detected on the
capture unit pins by recording the times of these transitions into a
two-level-deep FIFO stack. The capture unit pins can be set to detect rising
edge, falling edge, either type of transition, or no transition.

The C24x chip has six capture units — three associated with each EV module.
Capture units 1, 2, and 3 are associated with EVA and capture units 4, 5, and
6 are associated with EVB. Each capture unit is associated with a capture
input pin.

Note You can have up to two C24x CAP blocks in any one model — one block
for each EV module.

Each group of EV module capture units can use one of two general-purpose
(GP) timers on the target board. EVA capture units can use GP timer 1 or 2.
EVB capture units can use GP timer 3 or 4. When a transition occurs, the value
of the selected timer is stored in the two-level deep FIFO stack.

Outputs
This block has up to two outputs: a cnt (count) output and an optional, FIFO
status flag output. The cnt output increments each time a transition of the
selected type occurs. The status flag outputs are

• 0 — The FIFO is empty. Either no captures have occurred or the previously
stored capture(s) have been read from the stack. (The binary version of this
flag is 00.)

• 1 — The FIFO has one entry in the top register of the stack. (The binary
version of this flag is 01.)

• 2 — The FIFO has two entries in the stack registers. (The binary version of
this flag is 10.)

C24x CAP cntcnt

C24x CAP

C24x CAP

3-24

• 3 — The FIFO has two entries in the stack registers and one or more
captured values have been lost. This occurs because another capture
occurred before the FIFO stack was read. The new value is placed in the
bottom register. The bottom register value is pushed to the top of the stack
and the top value is pushed out of the stack. (The binary version of this flag
is 11.)

Dialog Box Data Format Panel

Module
Event manager (EV) module to use:

- A — Use CAPs 1, 2, and 3

- B — Use CAPs 4, 5, and 6

Output overrun status flag
Select to output the status of the elements in the FIFO. The data type of
the status flag is uint16.

Send data format
The type of data to output:

- Send 2 elements (FIFO Buffer) — Sends the latest two values. The
output is updated when there are two elements in the FIFO, which is
indicated by bit 13 or 11 or 9 being sent (CAP x FIFO). If the CAP is polled

C24x CAP

3-25

when fewer than two elements are captures, old values are repeated. The
CAP registers are read as follows:

a The CAP x FIFO status bits are read and the value is stored in the status
flag.

b The top value of the FIFO is read and stored in the output at index 0.

c The new top value of the FIFO (the previously stored bottom stack value)
is read and stored in the output at index 1.

- Send 1 element (oldest) — Sends the older of the two most recent
values. The output is updated when there is at least one element in the
FIFO, which is indicated by any of the bits 13:12, or 11:10, or 9:8 being
sent. The CAP registers are read as follows:

a The CAP x FIFO status bits are read and the value is stored in the status
flag.

b The top value of the FIFO is read and stored in the output.

- Send 1 element (latest) — Sends the most recent value. The output is
updated when there is at least one element in the FIFO, which is indicated
by any of the bits 13:12, or 11:10, or 9:8 being sent. The CAP registers are
read as follows:

a The CAP x FIFO status bits are read and the value is stored in the status
flag.

b If there are two entries in the FIFO, the bottom value is read and stored
in the output. If there is only one entry in the FIFO, the top value is read
and stored in the output.

Sample time
Time between outputs from the FIFO. If new data is not available, the
previous data is sent.

Data type
Data type of the output data. Available options are auto, double, single,
int8, uint8, int16, uint16, int32, uint32, and boolean. Selecting auto
defaults to double.

C24x CAP

3-26

CAP# Panel

The CAP# panels set parameters for individual CAPs. The particular CAP
affected by a CAPt# panel depends on the EV module you selected:

• CAP1 controls CAP 1 or CAP 4, for EV module A or B, respectively.

• CAP2 controls CAP 2 or CAP 5, for EV module A or B, respectively.

• CAP3 controls CAP 3 or CAP 6, for EV module A or B, respectively.

Enable CAP#
Select to use the specified capture unit pin.

Edge detection
Type of transition detection to use for this CAP. Available types are:
Rising Edge, Falling Edge, Both Edges, and No transition.

Time base
The target board GP timer to use. CAPs 1, 2, and 3 can use Timer 1 or
Timer 2. CAPs 4, 5, and 6 can use Timer 3 or Timer 4.

Note CAP 1 and CAP 2 must use the same GP timer.
CAP 4 and CAP 5 must use the same GP timer.

C24x CAP

3-27

Scaling
Clock divider factor by which to prescale the selected GP timer to produce
the desired timer counting rate. Available options are none, 1/2, 1/4, 1/8,
1/16, 1/32, 1/64, and 1/128. The resulting rate for each option is shown
below.

Note The above rates assume a 40 MHz input clock.

Scaling Resulting Rate (µs)

none 0.025

1/2 0.05

1/4 0.1

1/8 0.2

1/16 0.4

1/32 0.8

1/64 1.6

1/128 3.2

C24x GPIO Digital Input

3-28

3C24x GPIO Digital InputPurpose General-purpose I/O pins for digital input

Library c2400dspchiplib in Embedded Target for TI C2000 DSP

Description This block configures the general-purpose I/O (GPIO) registers that control the
GPIO shared pins for digital input. Each I/O port has one MUX register, which
is used to select peripheral operation or digital I/O operation.

Dialog Box

IO Port
Select the input/output port to use: IOPA, IOPB, IOPC, IOPD, IOPE, or IOPF
and select the I/O port bits to enable for digital input. If you select multiple

C24x GPIO DI

C24xGPIO_DI

C24x GPIO Digital Input

3-29

bits, vector input is expected. Unselected bits are available for peripheral
functionality. Note that multiple GPIO DI blocks cannot share the same
I/O port. Only one bit is available for IOPD.

Note The input function of the digital I/O and the input path to the related
peripheral are always enabled on the board. If you configure a pin as digital
I/O, the corresponding peripheral function cannot be used.

The following tables show the shared pins.

IO MUX Output Control Register A

Bit Peripheral Name GPIO Name

3 QEP1/CAP1 IOPA3

4 QEP2/CAP2 IOPA4

5 CAP3 IOPA5

6 PWM1 IOPA6

7 PWM2 IOPA7

8 PWM3 IOPB0

9 PWM4 IOPB1

10 PWM5 IOPB2

11 PWM6 IOPB3

IO MUX Output Control Register C

Bit Peripheral Name GPIO Name

1 PWM7 IOPE1

2 PWM8 IOPE2

C24x GPIO Digital Input

3-30

Sample time
Time interval, in seconds, between consecutive input from the pins.

Data type
Data type of the data to obtain from the GPIO pins. The data is read as
16-bit integer data and then cast to the selected data type. Valid data types
are auto, double, single, int8, uint8, int16, uint16, int32, uint32 or
boolean.

See Also C24x GPIO Digital Output

3 PWM9 IOPE3

4 PWM10 IOPE4

5 PWM11 IOPE5

6 PWM12 IOPE6

7 QEP3/CAP4 IOPE7

8 QEP4/CAP5 IOPF0

9 CAP6 IOPF1

IO MUX Output Control Register C

Bit Peripheral Name GPIO Name

C24x GPIO Digital Output

3-31

3C24x GPIO Digital OutputPurpose General-purpose I/O pins for digital output

Library c2400dspchiplib in Embedded Target for TI C2000 DSP

Description This block configures the general-purpose I/O (GPIO) registers that control the
GPIO shared pins for digital output. Each I/O port has one MUX register,
which is used to select peripheral operation or digital I/O operation.

Note The input function of the digital I/O and the input path to the related
peripheral are always enabled on the board. If you configure a pin as digital
I/O, the corresponding peripheral function cannot be used.

The following tables show the shared pins.

C24x GPIO DO

C24xGPIO_DO

IO MUX Output Control Register A

Bit Peripheral Name GPIO Name

3 QEP1/CAP1 IOPA3

4 QEP2/CAP2 IOPA4

5 CAP3 IOPA5

6 PWM1 IOPA6

7 PWM2 IOPA7

8 PWM3 IOPB0

9 PWM4 IOPB1

10 PWM5 IOPB2

11 PWM6 IOPB3

C24x GPIO Digital Output

3-32

IO MUX Output Control Register C

Bit Peripheral Name GPIO Name

1 PWM7 IOPE1

2 PWM8 IOPE2

3 PWM9 IOPE3

4 PWM10 IOPE4

5 PWM11 IOPE5

6 PWM12 IOPE6

7 QEP3/CAP4 IOPE7

8 QEP4/CAP5 IOPF0

9 CAP6 IOPF1

C24x GPIO Digital Output

3-33

Dialog Box

IO Port
Select the input/output port to use: IOPA, IOPB, IOPC, IOPD, IOPE, or IOPF
and select the bits to enable for digital output. If you select multiple bits,
vector input is expected. Unselected bits are available for peripheral
functionality. Note that multiple GPIO DO blocks cannot share the same
I/O port. Only one bit is available for IOPD.

See Also C24x GPIO Digital Input

C24x PWM

3-34

3C24x PWMPurpose Pulse wave modulators (PWMs)

Library c2400dspchiplib in Embedded Target for TI C2000 DSP

Description LF2407 DSPs include a set of pulse width modulators (PWM) used to generate
various signals. This block provides options to set the A or B module Event
Managers to generate the waveforms you require. The twelve PWMs are
configured in six pairs, with three pairs in each module.

Note All inputs to the C24x PWM block must be scalar values.

Dialog Box Timer Panel

C24x PWM

C24x PWM

C24x PWM

3-35

Module
Specifies which target PWM pairs to use:

- A — Enables the PWMs in module A (PWM1/PWM2, PWM3/PWM4, and
PWM5/PWM6)

- B — Enables the PWMs in module B (PWM7/PWM8, PWM9/PWM10, and
PWM11/PWM12)

Note PWMs in module A use event manager A, timer 1, and PWMs in
module B use event manager B, timer 3. You should make sure that the
TimerClock selected in the Scheduling section of the LF2407 eZdsp Target
Preferences block does not conflict with the timers used for the PWMs.

Waveform period source
Source from which the waveform period value is obtained. Select Specify
via dialog to enter the value in Waveform period or select Input port
to use a value from the input port.

Waveform period
Period of the PWM waveform measured in clock cycles or in seconds, as
specified in the Waveform period units.

Note “Clock cycles” refers to the peripheral clock on the LF2407 chip. This
clock is 40 MHz by default because the timer prescaler is set to 1.

Waveform type
Type of waveform to be generated by the PWM pair. The LF2407 PWMs
can generate two types of waveforms: Asymmetric and Symmetric. The
illustration below shows the difference between the two types of
waveforms.

C24x PWM

3-36

Waveform period units
Units in which to measure the waveform period. Options are clock cycles,
which refer to the peripheral clock on the LF2407 chip (40 MHz), or
seconds. Note that changing these units changes the Waveform period
value and the Duty cycle value and Duty cycle units selection.

���������	

���
���

��������	

���
���

��������	
���
���

��������	
���
���

�����
���������
�
������

�����
���������
�
������

C24x PWM

3-37

Outputs Panel

Enable PWM#/PWM#
Select to activate the PWM pair(s).

Duty cycle source
Source from which the duty cycle for the specific PWM pair is obtained.
Select Specify via dialog to enter the value in Duty Cycle or select
Input port to use a value, in seconds, from the input port.

Duty cycle
PWM waveform pulse duration expressed in Duty cycle units.

C24x PWM

3-38

Duty cycle units
Units for the duty cycle. Valid choices are Clock cycles and Percentages.
Note that changing these units changes the Duty cycle value, and the
Waveform period value and Waveform period units selection.

Logic Panel

Control logic source
Source from which the control logic is obtained for all PWMs. Select
Specify via dialog to enter the values in the PWM# control logic fields
or select Input port to use values from the input port.

PWM# control logic
Control logic trigger for the PWM. Forced high causes the pulse value to
be high. Active high causes the pulse value to go from low to high. Active

C24x PWM

3-39

low causes the pulse value to go from high to low. Forced low causes the
signal to be low.

Deadband Panel

Use deadband for PWM#/PWM#
Enables a deadband area of no signal overlap at the beginning of particular
PWM pair signals. The following figure shows the deadband area.

C24x PWM

3-40

Deadband prescaler
Number of clock cycles, which when multiplied by the deadband period,
determines the size of the dvbeadband. Selectable values are 1, 2, 4, 8, 16,
and 32.

Deadband period source
Source from which to obtain the deadband period. Select Specify via
dialog to enter the value in Deadband period or select Input port to use
a value, in clock cycles, from an external source.

Deadband period
Value that, when multiplied by the deadband prescaler, determines the
size of the deadband. Selectable values are from 1 to 15 clock cycles.

Deadband

PWM active high

PWM active low

Deadband Area

C24x PWM

3-41

ADC Control Panel

ADC start event
Controls whether this PWM and ADC associated with the same EV module
are synchronized. Select None for no synchronization or select an interrupt
to generate the source start-of-conversion (SOC) signal for the associated
ADC.

- None — The ADC and PWM are not synchronized. The EV does not
generate an SOC signal and the ADC is triggered by software (that is, the
analog-to-digital conversion occurs when the ADC block is executed in the
software).

- Underflow interrupt — The EV generates an SOC signal for the ADC
associated with the same EV module when the board’s general-purpose
(GP) timer counter reaches a hexadecimal value of FFFFh.

C24x PWM

3-42

- Period interrupt — The EV generates an SOC signal for the ADC
associated with the same EV module when the value of the GP timer
matches the value in the period register. The value set in Waveform
period above determines the value in the register.

Note If you select Period interrupt and specify a sampling time less than
the specified (Waveform period)/(CPU clock speed), zero-order hold
interpolation will occur. For example, if you enter 64000 as the waveform
period, the period for the ADC register is 64000/40 MHz = 0.0016. If you enter
a Sample time in the C24x ADC dialog that is less than this result, it will
cause zero-order hold interpolation.

- Compare interrupt — The EV generates an SOC signal for the ADC
associated with the same EV module when the value in the GP timer
matches the value in the compare register. The value set in Pulse width
above determines the value in the register.

See Also C24x ADC

C24x QEP

3-43

3C24x QEPPurpose Quadrature encoder pulse circuit

Library c2400dspchiplib in Embedded Target for TI C2000 DSP

Description Each L2407 Event Manager has three capture units, which can log transitions
on its capture unit pins. Event manager A (EVA) uses capture units 1, 2, and
3. Event manager B (EVB) uses capture units 4, 5, and 6.

The quadrature encoder pulse (QEP) circuit decodes and counts quadrature
encoded input pulses on these capture unit pins. QEP pulses are two sequences
of pulses with varying frequency and a fixed phase shift of 90 degrees (or
one-quarter of a period). Both edges of the QEP pulses are counted so the
frequency of the QEP clock is four times the input sequence frequency.

The QEP, in combination with an optical encoder, is particularly useful for
obtaining speed and position information from a rotating machine. Logic in the
QEP circuit determines the direction of rotation by which sequence is leading.
For module A, if the QEP1 sequence leads, the general-purpose (GP) timer
counts up and if the QEP2 sequence leads, the timer counts down. The pulse
count and frequency determine the angular position and speed.

Dialog Box

C24x QEP

C24xQEP

C24x QEP

3-44

Module
Specifies which QEP pins to use:

- A — Uses QEP1 and QEP2 pins.

- B — Uses QEP3 and QEP4 pins.

Counting mode
Specifies how to count the QEP pulses:

- CountBase — Count the pulses based on the board’s GP Timer 2 (or GP
Timer 4 for EVB).

- RPMBase — Count the machine’s revolutions per minute.

Positive rotation

Defines whether to use Clockwise or Counter clockwise as the direction
to use as postitive rotation. This field appears only if you select RPMBase
above.

Encoder resolution
Number of QEP pulses per revolution. This field appears only if you select
RPMBase above.

Sample time
Time interval, in seconds, between consecutive reads from the QEP pins.

Data type
Data type of the QEP pin data. The data is read as 16-bit data and then cast
to the selected data type. Valid data types are auto, double, single, int8,
uint8, int16, uint16, int32, uint32 or boolean.

C24x SCI Receive

3-45

3C24x SCI ReceivePurpose Receive data on the target via serial communications interface (SCI) from the
host

Library c2400dspchiplib in Embedded Target for TI C2000 DSP

Description The C24x SCI Receive block supports asynchronous serial digital
communications between the target and other asynchronous peripherals in
non-return-to-zero (NRZ) format. This block configures the C24x DSP target to
receive scalar or vector data from the COM port via the C24x target’s COM
port.

Note You can have only one C24x SCI Receive block in a single model.

Many SCI-specific settings are in the DSPBoard section of the LF2407 eZdsp
target preferences block. You should verify that these settings are correct for
your application.

Dialog Box

C24x SCI
Receive

Rx

C24x SCI Receive

C24x SCI Receive

3-46

Note If you open this block from the SCI-Based Host-Target Communication
demo, you will see an additional parameter used only in that demo.

Sample time
Sample time, Ts, for the block’s input sampling.

Data type
Data type of the output data. Available options are int8 and uint8.

See Also C24x SCI Transmit

C24x SCI Transmit

3-47

3C24x SCI TransmitPurpose Transmit data on target via serial communications interface (SCI) from host

Library c2400dspchiplib in Embedded Target for TI C2000 DSP

Description The C24x SCI Transmit block transmits scalar or vector data in int8 or uint8
format from the C24x target’s COM ports in non-return-to-zero (NRZ) format.
You can specify how many of the six target COM ports to use. The sampling
rate and data type are inherited from the input port. If no data type is specified,
the default data type is uint8.

Note You can have only one C24x SCI Transmit block in a single model.

Many SCI-specific settings are in the DSPBoard section of the LF2407 eZdsp
target preferences block. You should verify that these settings are correct for
your application.

Dialog Box

Note The parameter shown in this block is active only for demos, i.e., if you
open the block from the SCI-Based Host-Target Communication demo.

C24x SCI
Transmit

Tx

C24x SCI Transmit

C24x SCI Transmit

3-48

See Also C24x SCI Receive

C24x SPI Receive

3-49

3C24x SPI ReceivePurpose Receive data via the serial peripheral interface (SPI) on target

Library c2400dspchiplib in Embedded Target for TI C2000 DSP

Description The C24x SPI Receive supports synchronous, serial peripheral input/output
port communications between the DSP controller and external peripherals or
other controllers. The block can run in either slave or master mode. In master
mode, the SPISIM0 pin transmits data and the SPISOM1 pin receives data.
When master mode is selected, the SPI initiates the data transfer by sending a
serial clock signal (SPICLK), which is used for the entire serial
communications link. Data transfers are synchronized to this SPICLK, which
enables both master and slave to send and receive data simultaneously. The
maximum for the clock is one quarter of the DSP controller’s clock frequency.

Note You can have only one C24x SPI Receive block in a single model.

Many SPI-specific settings are in the DSPBoard section of the LF2407 eZdsp
target preferences block. You should verify that these settings are correct for
your application.

Dialog Box

Sample time
Sample time, Ts, for the block’s input sampling.

RxC24x SPI
Receive

C24x SPI Receive

C24x SPI Receive

3-50

Data type
Data type of the output data. Available options are auto, double, single,
int8, uint8, int16, uint16, int32, uint32, and boolean.

See Also C24x SPI Transmit

C24x SPI Transmit

3-51

3C24x SPI TransmitPurpose Transmit data via the serial peripheral interface (SPI) to host

Library c2400dspchiplib in Embedded Target for TI C2000 DSP

Description The C24x SPI Transmit supports synchronous, serial peripheral input/output
port communications between the DSP controller and external peripherals or
other controllers. The block can run in either slave or master mode. In master
mode, the SPISIM0 pin transmits data and the SPISOM1 pin receives data.
When master mode is selected, the SPI initiates the data transfer by sending a
serial clock signal (SPICLK), which is used for the entire serial
communications link. Data transfers are synchronized to this SPICLK, which
enables both master and slave to send and receive data simultaneously. The
maximum for the clock is one quarter of the DSP controller’s clock frequency.

The sampling rate and data type are inherited from the input port. If no data
type is specified, the default data type is uint16.

Note You can have only one C24x SPI Transmit block in a single model.

Many SPI-specific settings are in the DSPBoard section of the LF2407 eZdsp
target preferences block. You should verify that these settings are correct for
your application.

Dialog Box

See Also C24x SPI Receive

Tx C24x SPI
Transmit

C24x SPI Transmit

C28x ADC

3-52

3C28x ADCPurpose Analog-to-digital converter (ADC)

Library c2800dspchiplib in Embedded Target for TI C2000 DSP

Description The C28x ADC block configures the C28x ADC to perform analog-to-digital
conversion of signals connected to the selected ADC input pins. The ADC block
outputs digital values reprensenting the analog input signal and stores the
converted values in the result register of your digital signal processor. You use
this block to capture and digitize analog signals from external sources such as
signal generators, frequency generators, or audio devices.

Triggering
The C28x ADC trigger mode depends on the internal setting of the Source
Start-of-Conversion (SOC) signal. The ADC is usually triggered by software at
the sample time intervals specified in the ADC block — this is unsynchronized
mode.

In synchronized mode, the Event (EV) Manager associated with the same
module as the ADC triggers the ADC. In this case, the ADC is synchronized
with the pulse width modulator (PWM) waveforms generated by the same EV
unit via the ADC Start Event signal setting. The ADC Start Event is set in the
C28x PWM block. See that block for information on the settings.

Note The ADC cannot be synchronized with the PWM if the ADC is in
cascaded mode (see below).

Output
The output of the C28x ADC is a vector of uint16 values. The output values
are in the range 0 to 4095 because the C28x ADC is 12-bit converter.

Modes
The C28x ADC block supports ADC operation in dual and cascaded modes. In
dual mode, either Module A or Module B can be used for the ADC block, and two
ADC blocks are allowed in the model. In cascaded mode, both Module A and
Module B are used for a single ADC block.

C28x ADC

C28x ADC

C28x ADC

3-53

Dialog Box ADC Control Panel

Module
Specifies which DSP module to use:

- A — Displays the ADC channels in module A (ADCINA0 through
ADCINA7).

- B — Displays the ADC channels in module B (ADCINB0 through
ADCINB7).

- A and B — Displays the ADC channels in both modules A and B
(ADCINA0 through ADCINA7 and ADCINB0 through ADCINB7)

Then, use the check boxes to select the desired ADC channels.

Conversion mode
Type of sampling to use for the signals:

- Sequential — Samples the selected channels sequentially

- Simultaneous — Samples the corresponding channels of modules A and B
at the same time

Start of conversion
Type of signal that triggers conversions to begin:

C28x ADC

3-54

- Software — Signal from software

- EVA — Signal from Event Manager A

- EVB — Signal from Event Manager B

- External — Signal from external hardware

Sample time
Time in seconds between consecutive sets of samples that are converted for
the selected ADC channel(s). This is the rate at which values are read from
the result registers. See “Scheduling and Timing” on page 1-10 for more
information on timing.

To set different sample times for different groups of ADC channels, you
must add separate C28x ADC blocks to your model and set the desired
sample times for each block.

Data type
Date type of the output data. Valid data types are auto, double, single,
int8, uint8, int16, uint16, int32, or uint32.

Input Channels Panel

C28x ADC

3-55

Number of conversions
Number of ADC channels to use for analog-to-digital conversions.

Conversion no.
Specific ADC channel to associate with each conversion number.

In oversampling mode, a signal at a given ADC channel can be sampled
multiple times during a single conversion sequence. To oversample, specify
the same channel for more than one conversion. Converted samples are
output as a single vector.

Use multiple output ports
If more than one ADC channel is used for conversion, you can use separate
ports for each output and show the output ports on the block. If you use
more than one channel and do not use multiple output ports, the data is
output in a single vector.

See Also C28x PWM

C28x CAP

3-56

3C28x CAPPurpose Receive and log capture input pin transitions

Library c2800dspchiplib in Embedded Target for TI C2000 DSP

Description The C28x CAP block sets parameters for the capture units (CAPs) of the event
manager (EV) module. The capture units log transitions detected on the
capture unit pins by recording the times of these trasitions into a
two-level-deep FIFO stack. The capture unit pins can be set to detect rising
edge, falling edge, either type of transition, or no transition.

The C28x chip has six capture units — three associated with each EV module.
Capture units 1, 2, and 3 are associated with EVA and capture units 4, 5, and
6 are associated with EVB. Each capture unit is associated with a capture
input pin.

Note You can have up to two C28x CAP blocks in any one model — one block
for each EV module.

Each group of EV module capture units can use one of two general-purpose
(GP) timers on the target board. EVA capture units can use GP timer 1 or 2.
EVB capture units can use GP timer 3 or 4. When a transition occurs, the value
of the selected timer is stored in the two-level deep FIFO stack.

Outputs

Outputs
This block has up to two outputs: a cnt (count) output and an optional, FIFO
status flag output. The cnt output increments each time a transition of the
selected type occurs. The status flag outputs are

• 0 — The FIFO is empty. Either no captures have occurred or the previously
stored capture(s) have been read from the stack. (The binary version of this
flag is 00.)

• 1 — The FIFO has one entry in the top register of the stack. (The binary
version of this flag is 01.)

C28x CAP cntcnt

C28x CAP

C28x CAP

3-57

• 2 — The FIFO has two entries in the stack registers. (The binary version of
this flag is 10.)

• 3 — The FIFO has two entries in the stack registers and one or more
captured values have been lost. This occurs because another capture
occurred before the FIFO stack was read. The new value is placed in the
bottom register. The bottom register value is pushed to the top of the stack
and the top value is pushed out of the stack. (The binary version of this flag
is 11.)

Dialog Box Data Format Panel

Module
Select the event manager (EV) module to use:

- A — Use CAPs 1, 2, and 3.

- B — Use CAPs 4, 5, and 6.

Output overrun status flag
Select to output the status of the elements in the FIFO. The data type of
the status flag is uint16.

Send data format
The type of data to output:

C28x CAP

3-58

- Send 2 elements (FIFO Buffer) — Sends the latest two values. The
output is updated when there are two elements in the FIFO, which is
indicated by bit 13 or 11 or 9 being sent (CAP x FIFO). If the CAP is polled
when fewer than two elements are captures, old values are repeated. The
CAP registers are read as follows:

a The CAP x FIFO status bits are read and the value is stored in the status
flag.

b The top value of the FIFO is read and stored in the output at index 0.

c The new top value of the FIFO (the previously stored bottom stack value)
is read and stored in the output at index 1.

- Send 1 element (oldest) — Sends the older of the two most recent
values. The output is updated when there is at least one element in the
FIFO, which is indicated by any of the bits 13:12, or 11:10, or 9:8 being
sent. The CAP registers are read as follows:

a The CAP x FIFO status bits are read and the value is stored in the status
flag.

b The top value of the FIFO is read and stored in the output.

- Send 1 element (latest) — Sends the most recent value. The output is
updated when there is at least one element in the FIFO, which is indicated
by any of the bits 13:12, or 11:10, or 9:8 being sent. The CAP registers are
read as follows:

a The CAP x FIFO status bits are read and the value is stored in the status
flag.

b If there are two entries in the FIFO, the bottom value is read and stored
in the output. If there is only one entry in the FIFO, the top value is read
and stored in the output.

Sample time
Time between outputs from the FIFO. If new data is not available, the
previous data is sent.

Data type
Data type of the output data. Available options are auto, double, single,
int8, uint8, int16, uint16, int32, uint32, and boolean. The auto option

C28x CAP

3-59

uses the datatype of a connected block that outputs data to this block. If
this block does not receive any input, auto sets the dataype to double.

CAP# Panel

The CAP# panels set parameters for individual CAPs. The particular CAP
affected by a CAPt# panel depends on the EV module you selected:

• CAP1 controls CAP 1 or CAP 4, for EV module A or B, respectively.

• CAP2 controls CAP 2 or CAP 5, for EV module A or B, respectively.

• CAP3 controls CAP 3 or CAP 6, for EV module A or B, respectively.

Enable CAP#
Select to use the specified capture unit pin.

Edge Detection
Type of transition detection to use for this CAP. Available types are Rising
Edge, Falling Edge, Both Edges, and No transition.

Time Base
The target board GP timer to use. CAPs 1, 2, and 3 can use Timer 1 or
Timer 2. CAPs 4, 5, and 6 can use Timer 3 or Timer 4.

C28x CAP

3-60

Scaling
Clock divider factor by which to prescale the selected GP timer to produce
the desired timer counting rate. Available options are none, 1/2, 1/4, 1/8,
1/16, 1/32, 1/64, and 1/128. The resulting rate for each option is shown
below.

Note The above rates assume a 75 MHz input clock.

Scaling Resulting Rate (µs)

none 0.01334

1/2 0.02668

1/4 0.05336

1/8 0.10672

1/16 0.21344

1/32 0.42688

1/64 0.85376

1/128 1.70752

C28x eCAN Receive

3-61

3C28x eCAN ReceivePurpose Enhanced Control Area Network receive mailbox

Library c2800dspchiplib in Embedded Target for TI C2000 DSP

Description The C28x enhanced Control Area Network (eCAN) Receive block generates
source code for receiving eCAN messages through an eCAN mailbox. The eCAN
module on the DSP chip provides serial communication capability and has 32
mailboxes configurable for receive or transmit. The C28x supports eCAN data
frames in standard or extended format.

The C28x eCAN Receive block has up to two and, optionally, three output ports.

• The first output port is the function call port, and a function call subsystem
should be connected to this port. When a new message is received, this
subsystem is executed.

• The second output port is the message data port. The received data is output
in the form of a vector of elements of the selected data type. The length of the
vector is always 8 bytes.

• The third output port is optional and appears only if Output message length
is selected.

Mailbox: 0
C28x eCAN

Receive

f()

MsgMsgMsg

C28x eCAN Receive

C28x eCAN Receive

3-62

Dialog Box

Mailbox number
Unique number between 0 and 15 for standard or between 0 and 31 for
enhanced CAN mode. It refers to a mailbox area in RAM. In standard
mode, the mailbox number determines priority.

Message identifier
Identifier of length 11 bits for standard frame size or length 29 bits for
extended frame size in decimal, binary, or hex. If in binary or hex, use
bin2dec(' ') or hex2dec(' '), respectively, to convert the entry. The
message identifier is associated with a receive mailbox. Only messages
that match the mailbox message identifier are accepted into it.

Message type
Select Standard (11-bit identifier) or Extended (29-bit
identifier).

C28x eCAN Receive

3-63

Sample time
Frequency with which the mailbox is polled to determine if a new message
has been received. A new message causes a function call to be emitted from
the mailbox.

Data type
Type of data in the data vector. The length of the vector for the received
message is at most 8 bytes. If the message is less than 8 bytes, the data
buffer bytes are right-aligned in the output. Only uint16 (vector length = 4
elements) or unit32 (vector length = 8 elements) data are allowed. The data
are unpacked as follows using the data buffer, which is 8 bytes.

For uint16 data,

Output[0] = data_buffer[1..0];
Output[1] = data_buffer[3..2];
Output[2] = data_buffer[5..4];
Output[3] = data_buffer[7..6];

For unit32 data,

Output[0] = data_buffer[3..0];
Output[1] = data_buffer[7..4];

For example, if the received message has two bytes:

data_buffer[0] = 0x21
data_buffer[1] = 0x43

then the unit16 output would be:

Output[0] = 0x4321
Output[1] = 0x0000
Output[2] = 0x0000
Output[3] = 0x0000

Output message length
Select to output the message length in bytes to the third output port. If not
selected, the block has only two output ports.

References Detailed information on the eCAN module is in the TMS320F28x DSP
Enhanced Control Area Network (eCAN) Reference Guide, Literature Number
SPRU074A, available at the Texas Instruments Web site.

C28x eCAN Receive

3-64

See Also C28x eCAN Transmit

C28x eCAN Transmit

3-65

3C28x eCAN TransmitPurpose Enhanced Control Area Network transmit mailbox

Library c2800dspchiplib in Embedded Target for TI C2000 DSP

Description The C84x enhanced Control Area Network (eCAN) Transmit block generates
source code for transmitting eCAN messages through an eCAN mailbox. The
eCAN module on the DSP chip provides serial communication capability and
has 32 mailboxes configurable for receive or transmit. The C28x supports
eCAN data frames in standard or extended format.

Data Vectors
The length of the vector for each transmitted mailbox message is 8 bytes. Input
data are always right-aligned in the message data buffer. Only uint16 (vector
length = 4 elements) or unit32 (vector length = 8 elements) data are accepted.
The following examples show how the different types of input data are aligned
in the data buffer

For input of type uint32,

inputdata [0] = 0x12345678

the data buffer is:

data buffer[0] = 0x78
data buffer[1] = 0x56
data buffer[2] = 0x34
data buffer[3] = 0x12
data buffer[4] = 0x00
data buffer[5] = 0x00
data buffer[6] = 0x00
data buffer[7] = 0x00

For input of type uint16,

inputdata [0] = 0x1234

the data buffer is:

data buffer[0] = 0x34
data buffer[1] = 0x12
data buffer[2] = 0x00
data buffer[3] = 0x00

Mailbox: 1
C28x eCAN

Transmit
Msg

C28x eCAN Transmit

C28x eCAN Transmit

3-66

data buffer[4] = 0x00
data buffer[5] = 0x00
data buffer[6] = 0x00
data buffer[7] = 0x00

For input of type uint16[2], which is a two-element vector,

inputdata [0] = 0x1234
inputdata [1] = 0x5678

the data buffer is:

data buffer[0] = 0x34
data buffer[1] = 0x12
data buffer[2] = 0x78
data buffer[3] = 0x56
data buffer[4] = 0x00
data buffer[5] = 0x00
data buffer[6] = 0x00
data buffer[7] = 0x00

Dialog Box

Mailbox number
Unique number between 0 and 15 for standard or between 0 and 31 for
enhanced CAN mode. It refers to a mailbox area in RAM. In standard
mode, the mailbox number determines priority.

C28x eCAN Transmit

3-67

Message identifier
Identifier of length 11 bits for standard frame size or length 29 bits for
extended frame size in decimal, binary, or hex. If in binary or hex, use
bin2dec(' ') or hex2dec (' '), respectively, to convert the entry. The
message identifier is coded into a message that is sent to the CAN bus.

Message type
Select Standard (11-bit identifier) or Extended (29-bit
identifier).

Enable blocking mode
If the parameter is checked, the CAN block code waits indefinitely for a
transmit (XMT) acknowledge. If this parameter is not checked, the CAN
block code does not wait for a transmit (XMT) acknowledge, which is useful
when the hardware might fail to acknowledge transmissions.

References Detailed information on the eCAN module is in the TMS320F28x DSP
Enhanced Control Area Network (eCAN) Reference Guide, Literature Number
SPRU074A, available at the Texas Instruments Web site.

See Also C28x eCAN Receive

C28x GPIO Digital Input

3-68

3C28x GPIO Digital InputPurpose General-purpose I/O pins for digital input

Library c2800dspchiplib in Embedded Target for TI C2000 DSP

Description This block configures the general-purpose I/O (GPIO) registers that control the
GPIO shared pins for digital input. Each I/O port has one MUX register, which
is used to select peripheral operation or digital I/O operation.

C28x GPIO DI

C28xGPIO_DI

C28x GPIO Digital Input

3-69

Dialog Box

IO Port
Select the input/output port to use: GPIOPA, GPIOPB, GPIOPD, GPIOPE,
GPIOPF, or GPIOPG and select the I/O Port bits to enable for digital input.
(Note that there is no GPIOPC port on the C28x.) If you select multiple
bits, vector input is expected. Unselected bits are available for peripheral
functionality. Multiple GPIO DI blocks cannot share the same I/O port.

C28x GPIO Digital Input

3-70

Note The input function of the digital I/O and the input path to the related
peripheral are always enabled on the board. If you configure a pin as digital
I/O, the corresponding peripheral function cannot be used.

The following tables show the shared pins.

GPIO A MUX

Bit Peripheral Name
(bit =1)

GPIO Name
(bit = 0)

0 PWM1 GPIOA0

1 PWM2 GPIOA1

2 PWM3 GPIOA2

3 PWM4 GPIOA3

4 PWM5 GPIOA4

5 PWM6 GPIOA5

8 QEP1/CAP1 GPIOA8

9 QEP2/CAP2 GPIOA9

10 CAP3 GPIOA10

GPIO B MUX

Bit Peripheral Name
(bit =1)

GPIO Name
(bit = 0)

0 PWM7 GPIOB0

1 PWM8 GPIOB1

2 PWM9 GPIOB2

C28x GPIO Digital Input

3-71

Sample time
Time interval, in seconds, between consecutive input from the pins.

Data type
Data type of the data to obtain from the GPIO pins. The data is read as
16-bit integer data and then cast to the selected data type. Valid data types
are auto, double, single, int8, uint8, int16, uint16, int32, uint32 or
boolean.

See Also C28x GPIO Digital Output

3 PWM10 GPIOB3

4 PWM11 GPIOB4

5 PWM12 GPIOB5

8 QEP3/CAP4 GPIOB8

9 QEP4/CAP5 GPIOB9

10 CAP6 GPIOB10

GPIO B MUX

Bit Peripheral Name
(bit =1)

GPIO Name
(bit = 0)

C28x GPIO Digital Output

3-72

3C28x GPIO Digital OutputPurpose General-purpose I/O pins for digital output

Library c2800dspchiplib in Embedded Target for TI C2000 DSP

Description This block configures the general-purpose I/O (GPIO) registers that control the
GPIO shared pins for digital output. Each I/O port has one MUX register,
which is used to select peripheral operation or digital I/O operation.

Dialog Box

C28x GPIO DO

C28xGPIO_DO

C28x GPIO Digital Output

3-73

IO Port
Select the input/output port to use: GPIOPA, GPIOPB, GPIOPD, GPIOPE,
GPIOPF, or GPIOPG and select the I/O Port bits to enable for digital input.
(Note that there is no GPIOPC port on the C28x.) If you select multiple
bits, vector input is expected. Unselected bits are available for peripheral
functionality. Note that multiple GPIO DO blocks cannot share the same
I/O port.

Note The input function of the digital I/O and the input path to the related
peripheral are always enabled on the board. If you configure a pin as digital
I/O, the corresponding peripheral function cannot be used.

The following tables show the shared pins.

GPIO A MUX

Bit Peripheral Name
(bit =1)

GPIO Name
(bit = 0)

0 PWM1 GPIOA0

1 PWM2 GPIOA1

2 PWM3 GPIOA2

3 PWM4 GPIOA3

4 PWM5 GPIOA4

5 PWM6 GPIOA5

8 QEP1/CAP1 GPIOA8

9 QEP2/CAP2 GPIOA9

10 CAP3 GPIOA10

C28x GPIO Digital Output

3-74

See Also C28x GPIO Digital Input

GPIO B MUX

Bit Peripheral Name
(bit =1)

GPIO Name
(bit = 0)

0 PWM7 GPIOB0

1 PWM8 GPIOB1

2 PWM9 GPIOB2

3 PWM10 GPIOB3

4 PWM11 GPIOB4

5 PWM12 GPIOB5

8 QEP3/CAP4 GPIOB8

9 QEP4/CAP5 GPIOB9

10 CAP6 GPIOB10

C28x PWM

3-75

3C28x PWMPurpose Pulse wave modulators (PWMs)

Library c2800dspchiplib in Embedded Target for TI C2000 DSP

Description F2812 DSPs include a suite of pulse width modulators (PWMs) used to
generate various signals. This block provides options to set the A or B module
Event Managers to generate the waveforms you require. The twelve PWMs are
configured in six pairs, with three pairs in each module.

Note All inputs to the C24x PWM block must be scalar values.

Dialog Box Timer Panel

C28x PWM

C28x PWM

C28x PWM

3-76

Module
Specifies which target PWM pairs to use:

- A — Displays the PWMs in module A (PWM1/PWM2, PWM3/PWM4, and
PWM5/PWM6).

- B — Displays the PWMs in module B (PWM7/PWM8, PWM9/PWM10, and
PWM11/PWM12).

Note PWMs in module A use Event Manager A, Timer 1, and PWMs in
module B use Event Manager B, Timer 3.

Waveform period source
Source from which the waveform period value is obtained. Select Specify
via dialog to enter the value in Waveform period or select Input port
to use a value from the input port.

Waveform period
Period of the PWM waveform measured in clock cycles or in seconds, as
specified in the Waveform period units.

Note “Clock cycles” refers to the high-speed peripheral clock on the F2812
chip. This clock is 75 MHz by default because the high-speed peripheral clock
prescaler is set to 2 (150MHz/2).

Waveform type
Type of waveform to be generated by the PWM pair. The F2812 PWMs can
generate two types of waveforms: Asymmetric and Symmetric. The
following illustration shows the difference between the two types of
waveforms.

C28x PWM

3-77

Waveform period units
Units in which to measure the waveform period. Options are Clock cycles,
which refer to the high-speed peripheral clock on the F2812 chip (75 MHz),
or Seconds. Note that changing these units changes the Waveform period
value and the Duty cycle value and Duty cycle units selection.

���������	

���
���

��������	

���
���

��������	
���
���

��������	
���
���

�����
���������
�
������

�����
���������
�
������

C28x PWM

3-78

Outputs Panel

Enable PWM#/PWM#
Check to activate the PWM pair. PWM1/PWM2 are activated via the
Output 1 panel, PWM3/PWM4 are on Output 2, and PWM5/PWM6 are on
Output 3.

Duty cycle source
Source from which the duty cycle for the specific PWM pair is obtained.
Select Specify via dialog to enter the value in Duty cycle or select Input
port to use a value from the input port.

Duty cycle
Ratio of the PWM waveform pulse duration to the PWM waveform period
expressed in Duty cycle units.

C28x PWM

3-79

Duty cycle units
Units for the duty cycle. Valid choices are Clock cycles and Percentages.
Note that changing these units changes the Duty cycle value, and the
Waveform period value and Waveform period units selection.

Logic Panel

Control logic source
Source from which the control logic is obtained for all PWMs. Select
Specify via dialog to enter the values in the PWM# control logic fields
or select Input port to use values from the input port.

PWM# control logic
Control logic trigger for the PWM. Forced high causes the pulse value to
be high. Active high causes the pulse value to go from low to high and

C28x PWM

3-80

Active low causes the pulse value to go from high to low. Forced low
causes the pulse value to be low.

Deadband Panel

Use deadband for PWM#/PWM#
Enables a deadband area of no signal overlap at the beginning of particular
PWM pair signals. The following figure shows the deadband area.

C28x PWM

3-81

Deadband prescaler
Number of clock cycles, which, when multiplied by the Deadband period,
determines the size of the deadband. Selectable values are 1, 2, 4, 8, 16, and
32.

Deadband period source
Source from which the deadband period is obtained. Select Specify via
dialog to enter the values in the Deadband period field or select Input
port to use a value, in clock cycles, from the input port.

Deadband period
Value that, when multiplied by the Deadband prescaler, determines the
size of the deadband. Selectable values are from 1 to 15.

Deadband

PWM active high

PWM active low

C28x PWM

3-82

ADC Control Panel

ADC start event
Controls whether this PWM and ADC associated with the same EV module
are synchronized. Select None for no synchronization or select an interrupt
to generate the Source Start-of-Conversion (SOC) signal for the associated
ADC.

- None — The ADC and PWM are not synchronized. The EV does not
generate an SOC signal and the ADC is triggered by software (that is, the
A/D conversion occurs when the ADC block is executed in the software).

- Underflow interrupt — The EV generates an SOC signal for the ADC
associated with the same EV module when the board’s General Purpose
(GP) timer counter reaches a hexadecimal value of FFFFh.

C28x PWM

3-83

- Period interrupt — The EV generates an SOC signal for the ADC
associated with the same EV module when the value in GP timer matches
the value in the period register. The value set in Waveform period above
determines the value in the register.

Note If you select Period interrupt and specify a sampling time less than
the specified (Waveform period)/(Event timer clock speed), zero-order hold
interpolation will occur. (For example, if you enter 64000 as the waveform
period, the period for the timer is 64000/75 MHz = 8.5333e-004. If you enter a
Sample time in the C28x ADC dialog that is less than this result, it will cause
zero-order hold interpolation.)

- Compare interrupt — The EV generates an SOC signal for the ADC
associated with the same EV module when the value in the GP timer
matches the value in the compare register. The value set in Pulse width
above determines the value in the register.

See Also C28x ADC

C28x QEP

3-84

3C28x QEPPurpose Quadrature encoder pulse circuit

Library c2800dspchiplib in Embedded Target for TI C2000 DSP

Description Each F2812 Event Manager has three capture units, which can log transitions
on its capture unit pins. Event manager A (EVA) uses capture units 1, 2, and
3. Event manager B (EVB) uses capture units 4, 5, and 6.

The quadrature encoder pulse (QEP) circuit decodes and counts quadrature
encoded input pulses on these capture unit pins. QEP pulses are two sequences
of pulses with varying frequency and a fixed phase shift of 90 degrees (or
one-quarter of a period). Both edges of the QEP pulses are counted so the
frequency of the QEP clock is four times the input sequence frequency.

The QEP, in combination with an optical encoder, is particularly useful for
obtaining speed and position information from a rotating machine. Logic in the
QEP circuit determines the direction of rotation by which sequence is leading.
For module A, if the QEP1 sequence leads, the general-purpose (GP) Timer
counts up and if the QEP2 seequence leads, the timer counts down. The pulse
count and frequency determine the angular position and speed.

Dialog Box

C28x QEP

C28xQEP

C28x QEP

3-85

Module
Specifies which QEP pins to use:

- A — Uses QEP1 and QEP2 pins.

- B — Uses QEP3 and QEP4 pins.

Counting mode
Specifies how to count the QEP pulses:

- CountBase — Count the pulses based on the board’s GP Timer 2 (or GP
Timer 4 for EVB).

- RPMBase — Count the machine’s revolutions per minute.

Positive rotation
Defines whether to use Clockwise or Counter clockwise as the direction to
use as postitive rotation. This field appears only if you select RPMBase
above.

Encoder resolution
Number of QEP pulses per revolution. This field appears only if you select
RPMBase above.

Sample time
Time interval, in seconds, between consecutive reads from the QEP pins.

Data type
Data type of the QEP pin data. The data is read as 16-bit data and then cast
to the selected data type. Valid data types are auto, double, single, int8,
uint8, int16, uint16, int32, uint32 or boolean.

C28x SCI Receive

3-86

3C28x SCI ReceivePurpose Receive data on target via serial communications interface (SCI) from host

Library c2800dspchiplib in Embedded Target for TI C2000 DSP

Description The C28x SCI Receive block supports asynchronous serial digital
communications between the target and other asynchronous peripherals in
non-return-to-zero (NRZ) format. This block configures the C28x DSP target to
receive scalar or vector data from the COM port via the C28x target’s COM
port.

Note You can have only one C28x SCI Receive block in a single model.

Many SCI-specific settings are in the DSPBoard section of the F2812 eZdsp
target preferences block. You should verify that these settings are correct for
your application.

Dialog Box

SCI module
SCI module to be used for communications.

C28x SCI
Receive

Rx

C28x SCI Receive

C28x SCI Receive

3-87

Number of FIFOs requested
Number of elements to be read from the hardware FIFO.

Sample time
Sample time, Ts, for the block’s input sampling.

Data type
Data type of the output data. Available options are int8 and uint8.

References Detailed information on the SCI module is in the TMS320x281x, 280x DSP
Serial Communication Interface (SCI) Reference Guide, Literature Number
SPRU051B, available at the Texas Instruments Web site.

See Also C28x SCI Transmit

C28x SCI Transmit

3-88

3C28x SCI TransmitPurpose Transmit data on target via serial communications interface (SCI) from host

Library c2800dspchiplib in Embedded Target for TI C2000 DSP

Description The C28x SCI Transmit block transmits scalar or vector data in int8 or uint8
format from the C28x target’s COM ports in non-return-to-zero (NRZ) format.
You can specify how many of the six target COM ports to use. The sampling
rate and data type are inherited from the input port. If no data type is specified,
the default data type is uint8.

Note You can have only one C28x SCI Transmit block in a single model.

Many SCI-specific settings are in the DSPBoard section of the F2812 eZdsp
target preferences block. You should verify that these settings are correct for
your application.

Dialog Box

SCI module
SCI module to be used for commuincations.

Number of FIFOs requested
Number of elements to be transmitted from the hardware FIFO.

C28x SCI
Transmit

Tx

C28x SCI Transmit

C28x SCI Transmit

3-89

References Detailed information on the SCI module is in the TMS320x281x, 280x DSP
Serial Communication Interface (SCI) Reference Guide, Literature Number
SPRU051B, available at the Texas Instruments Web site.

See Also C28x SCI Receive

C28x SPI Receive

3-90

3C28x SPI ReceivePurpose Receive data via the serial peripheral interface (SPI) on the target

Library c2800dspchiplib in Embedded Target for TI C2000 DSP

Description The C28x SPI Receive supports synchronous, serial peripheral input/output
port communications between the DSP controller and external peripherals or
other controllers. The block can run in either slave or master mode. In master
mode, the SPISIM0 pin transmits data and the SPISOM1 pin receives data.
When master mode is selected, the SPI initiates the data transfer by sending a
serial clock signal (SPICLK), which is used for the entire serial
communications link. Data transfers are synchronized to this SPICLK, which
enables both master and slave to send and receive data simultaneously. The
maximum for the clock is one quarter of the DSP controller’s clock frequency.

Note You can have only one C28x SPI Receive block in a single model.

Many SPI-specific settings are in the DSPBoard section of the F2812 eZdsp
target preferences block. You should verify that these settings are correct for
your application.

Dialog Box

RxC28x SPI
Receive

C28x SPI Receive

C28x SPI Receive

3-91

Sample time
Sample time, Ts, for the block’s input sampling.

Data type
Data type of the output data. Available options are auto, double, single,
int8, uint8, int16, uint16, int32, and uint32.

See Also C28x SPI Transmit

C28x SPI Transmit

3-92

3C28x SPI TransmitPurpose Transmit data via the serial peripheral interface (SPI) to the host

Library c2800dspchiplib in Embedded Target for TI C2000 DSP

Description The C28x SPI Transmit supports synchronous, serial peripheral input/output
port communications between the DSP controller and external peripherals or
other controllers. The block can run in either slave or master mode. In master
mode, the SPISIM0 pin transmits data and the SPISOM1 pin receives data.
When master mode is selected, the SPI initiates the data transfer by sending a
serial clock signal (SPICLK), which is used for the entire serial
communications link. Data transfers are synchronized to this SPICLK, which
enables both master and slave to send and receive data simultaneously. The
maximum for the clock is one quarter of the DSP controller’s clock frequency.

The sampling rate and data type are inherited from the input port. If no data
type is specified, the default data type is uint16.

Note You can have only one C28x SPI Transmit block in a single model.

Many SPI-specific settings are in the DSPBoard section of the F2812 eZdsp
target preferences block. You should verify that these settings are correct for
your application.

Dialog Box

See Also C28x SPI Receive

Tx C28x SPI
Transmit

C28x SPI Transmit

Clarke Transformation

3-93

3Clarke TransformationPurpose Convert balanced three-phase quantities to balanced two-phase quadrature
quantities

Library c28xdmclib in Embedded Target for TI C2000 DSP

Description This block converts balanced three-phase quantities into balanced two-phase
quadrature quantities. The transformation implements these equations

Id = Ia

and is illustrated in the following figure.

The inputs to this block are the phase a (Ia) and phase b (Ib) components of the
balanced three-phase quantities and the outputs are the direct axis (Id)
component and the quadrature axis (Iq) of the transformed signal.

The instantaneous outputs are defined by the following equations:

id = I sin(wt)

iq = I sin(wt + π/2)

Note The implementation of this block does not call the corresponding Texas
Instruments library function during code generation. The TI function uses a
global Q setting and the MathWorks code used by this block dynamically

Ia

Ib

Id

Iq
Clarke

DMC

Clarke
Transformation

Iq 2Ib Ia+() 3⁄=

Clarke Transformation

3-94

adjusts the Q format based on the block input. See “About the
IQmath Library” on page 2-2 for more information.

Dialog Box

References Detailed information on the DMC library is in the C/F 28xx Digital Motor
Control Library, Literature Number SPRC080, available at the Texas
Instruments Web site.

See Also Inverse Park Transformation, Park Transformation, PID Controller, Space
Vector Generator, Speed Measurement

Division IQN

3-95

3Division IQNPurpose Divide two IQ numbers

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block divides two numbers that use the same Q format, using the
Newton-Raphson technique. The resulting quotient uses the same Q format at
the inputs.

Note The implementation of this block does not call the corresponding Texas
Instruments library function during code generation. The TI function uses a
global Q setting and the MathWorks code used by this block dynamically
adjusts the Q format based on the block input. See “About the
IQmath Library” on page 2-2 for more information.

Dialog Box

See Also Absolute IQN, Arctangent IQN, Float to IQN, Fractional part IQN, Fractional
part IQN x int32, Integer part IQN, Integer part IQN x int32, IQN to Float,
IQN x int32, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2, Magnitude IQN,
Saturate IQN, Square Root IQN, Trig Fcn IQN

A

B
Y

IQNdiv

IQmath

IQN / IQN

F2812 eZdsp

3-96

3F2812 eZdspPurpose F2812 eZdsp DSK target preferences

Library c2000tgtpreflib in Embedded Target for TI C2000 DSP

Description Options on the block mask let you set features of code generation for your
Spectrum Digital F2812 eZdsp target. Adding this block to your Simulink
model provides access to building, linking, compiling, and targeting settings
you need to configure the code that Real-Time Workshop generates.

Note This block must be in your model at the top level and not in a
subsystem. It does not connect to any other blocks, but stands alone to set the
target preferences for the model.

Dialog Box BuildOptions

F2812 eZdsp

F2812 eZdsp

3-97

BuildOptions — CompilerOptions
Compiler Verbosity

Amount of information the compiler returns while it runs. Options are

- Verbose — Returns all compiler messages.

- Quiet — Suppresses compiler progress messages.

- Super_quiet — Suppresses all compiler messages.

KeepASMFiles
Whether Real-Time Workshop and the Embedded Target for TI C2000 DSP
save your assembly language (.asm) files after creation. The default is true
— .asm files are kept in your current directory. If you choose not to keep the
.asm files, set this option to false.

OptimizationLevel
Degree of optimization provided by the TI optimizing compiler to apply to
files in your project. For details about the compiler options, refer to your
CCS documentation. When you create new projects, the Embedded Target
for TI C2000 DSP sets the optimization to Function(-o2).

SymbolicDebugging
Whether to generate symbolic debugging directives that the C source-level
debugger uses and whether to enable assembly source debugging. By
default, this option is Yes — symbolic debugging is enabled.

BuildOptions — LinkerOptions
CreateMAPFile

Whether the linker produces a map of the input and output sections,
including null areas, and places the listing in a file in your current
directory with the name modelname.map. The default is True — the listing
is produced.

KeepOBJFiles
Whether Real-Time Workshop and the Embedded Target for TI C2000 DSP
save your object (.obj) files after creation. The linker uses object (.obj
extension) files to generate a single executable common object file format
(COFF) file that you run on the target DSP. The object files are saved to
your current project directory. Saving your .obj files can speed up the

F2812 eZdsp

3-98

compile process by not having to recompile files that you have not changed.
The default is True — the .obj files are retained.

LinkerCMDFile
Type of linker command file to use when the linker runs. Linker command
files contain linker or hex conversion utility options and the names of input
files to the linker or hex conversion utility. Linker command file types are

- Internal_memory_map — Uses the small memory model on the target,
which requires that all sections of the code and data fit into the memory
available only on the F2812 DSP chip (minus the flash memory).

- Full_memory_map — Uses the large memory model on the target, which
does not restrict the size of the code and data sections to DSP memory only.
Your data can use the storage space up to the limits of the board.

- Custom_file — Uses the file in the LinkerCmdFileName field. This option
allows you to target custom boards. You must specify the full path of the
file. Note that the software does not verify that the commands in this file
are correct. Note that if you use Internal_ or Full_memory_map, specifying
a Custom_file has no effect.

When you select the Internal_memory_map option, the Embedded Target
for TI C2000 DSP specifies that only the available internal memory on the
F2812 is used.

If you select Internal_memory_map, but your data or program requires far
calls, the TI compiler returns an error message like the following in the
CCS IDE:

error: can't allocate '.far'

or

error: can't allocate '.text'

indicating that your data does not fit in internal memory or that your code
does not fit in internal memory. To eliminate these errors, select
Full_memory_map. Note that your program might run more slowly than if you
use the internal map option.

F2812 eZdsp

3-99

BuildOptions — RunTimeOptions
BuildAction

Action taken by Real-Time Workshop when you click Build or press Ctrl+B
in the Simulation Parameters dialog box. The actions are cumulative —
each listed action adds features to the previous action on the list and
includes all the previous features:

- Generate_code_only — Directs Real-Time Workshop to generate C code
only from the model. It does not use the TI software tools, such as the
compiler and linker, and you do not need to have CCS installed. Also,
MATLAB does not create the handle to CCS that results from the other
options.

The build process for a model also generates the files modelname.c,
modelname.cmd, modelname.bld, and many others. It puts the files in a
build directory named modelname_C2000_rtw in your MATLAB working
directory. This file set contains many of the same files that Real-Time
Workshop generates to populate a CCS project when you choose
Create_CCS_Project for the build action.

- Create_CCS_Project — Directs Real-Time Workshop to start CCS and
populate a new project with the files from the build process. Selecting this
setting enables the CCS board number option so you can select which
installed board to target. This option offers a convenient way to build
projects in CCS.

- Build — Builds the executable COFF file, but does not download the file
to the target.

- Build_and_execute — Directs Real-Time Workshop to download and run
your generated code as an executable on your target. This is the default.

Note When you build and execute a model on your target, the Real-Time
Workshop build process resets the target automatically. You do not need to
reset the board before building models.

F2812 eZdsp

3-100

OverrunAction
Defines the action to take when an interrupt overrun occurs.

- Continue — Ignore overruns encountered while running the model. This
is the default.

- Halt — Stop program execution.

CCSLink

CCSHandleName
Name of the CCS handle. Click in the edit box to change the name. When
you use Real-Time Workshop to build a model for a C2000 target,
Embedded Target for TI C2000 DSP makes a link between MATLAB and
CCS. If you have used the link portion of the Embedded Target for TI
C2000 DSP, you are familiar with function ccsdsp, which creates links
between the IDE and MATLAB. This option refers to the same link, called
cc in the function reference pages. Although MATLAB to CCS is a link, it
is actually a handle to an object that contains information about the object,
such as the target board and processor it accesses.

ExportCCSHandle
Whether to export the CCS handle to your MATLAB workspace, giving it
the name you assigned in CCSHandleName. If this is set to true, after you
build your model, you will see the CCS object in your MATLAB workspace
browser with the name you provided and class type ccsdsp.

F2812 eZdsp

3-101

CodeGeneration

Scheduler
Algorithm

Algorithm to use for scheduling. The algorithm options are

- Preemptive_priority_based — This scheduler runs based on the timer
interrupt. The timer period is set based on the base rate sample time you
specify for your model. This algorithm supports multirate systems in
multitasking mode with priority-based preemption. The task for the
fastest group (the base rate task) runs first and other tasks run in the
order determined by their sample rates from faster tasks to slower tasks.
For more information, see the Models with Multiple Sample Rates section
of the Real Time Workshop documentation.

- Free_running — This scheduler does not use any interrupts. Tasks run in
priority-based order and the execution of each task depends only on how
fast the task can run on the given processor. This algorithm does not
support preemption or multitasking. (Selecting MultiTasking as the
Tasking mode in Configuration Parameters-Solver is not allowed for
this scheduling.) Overruns do not occur with this type of scheduling, so any
value in BuildOption-RuntimeOptions - OverrunAction is ignored.

Timer
CPU timer to use for scheduling.

F2812 eZdsp

3-102

DSPBoard

DSPBoardLabel
Name of the installed DSP board. Click in the edit box to change the label.

F2812 eZdsp

3-103

Note The board label here must match exactly the label (name) of the board
entered in your Code Composer Studio setup.

DSPChip
DSPChipLabel

DSP chip model. Select the DSP chip installed on your target. The chip
model is fixed for the F2812 eZdsp. If you change the chip model, an error
will be generated in code generation.

SCI
Parameters that affect the serial communications interfaces (SCI) on the
target.

The settable parameters are

BaudRate
Baud rate for transmitting and receiving data.

CharacterLengthBits
Length in bits from 1 to 8 of each transmitted/received character.

EnableLoopBack
Select True to enable the loopback function for self-test and diagnostic
purposes only. When this is enabled, a C28x DSP’s Tx pin is internally
connected to its Rx pin and it can transmit data from its output port to its
input port to check the integrity of the transmission.

EnableParity
Select True to enable parity checking on the transmit/receive data.

NumberOfStopBits
Select whether to use 1 or 2 stop bits.

ParityMode
Type of parity to use. Avaliable selections are Odd parity or Even parity.
Enable Parity must be set to True to use the selected ParityMode.

F2812 eZdsp

3-104

SuspensionMode
Type of suspension to use when debugging your program with Code
Composer Studio. When your program encounters a breakpoint, the
selected suspension mode determines whether to perform the program
instruction. Available options are Hard abort, Soft abort, and Free run.
Hard abort stops the program immediately. Soft abort stops when the
current receive/transmit sequence is complete. Free run continues running
regardless of the breakpoint.

UARTInterface
Protocol to use when sending or receiving UART mode data. Although
available protocols are Raw_data and To/From_host_block, only Raw_data
is supported. Raw_data sends or receives all data in its raw format, one
byte at a time. Since the C28x SCI module has a 16-byte FIFO buffer, both
the C28x SCI Receive and Transmit blocks can receive/transmit scalar or
vector data.

To/From_host_block is not supported currently and is provided only for
use in demos. It uses the serial communication interface to communicate
with host-side SCI blocks. It attempts to read and interpret a specified
number of elements via a for loop using internal protocol.

SPI
Parameters that affect the serial peripheral interfaces (SPI) on the target.

The settable parameters are

BaudRateFactor
Factor to customize the baud rate, where the CPU rate is the target’s
working frequency and

Baud Rate = CPU Rate / (Baud Rate Factor + 1)

ClockPhase
Whether the data is output immediately (No_delay) or delayed by a half
clock cycle (Delay_half_cycle) with respect to the rising edge.

F2812 eZdsp

3-105

ClockPolarity
Whether the data is output at the Rising_edge or Falling_edge of the
system clock.

DataBits
Length in bits from 1 to 16 of each transmitted/received character. For
example, if you select 8, the maximum data that can be transmitted using
SPI is 28-1. If you send data greater than this value, the buffer overflows.

EnableFIFO
Select True to enable the FIFO buffers in the SPI module.

EnableLoopBack
Select True to enable the loopback function for self-test and diagnostic
purposes only. The SPI must be in master mode to use loopback. When this
is enabled, a C28x DSP’s SIMO/SOMI lines are connected internally.

FIFONumbers
Enter the number of FIFO buffers to enable. You can specify 1 to 16 buffers.

FIFOTransmitDelay
Amount of time in target clock cycles to pause between data transmissions.

Mode
Whether to run the SPI module in Master or Slave mode. Master mode
initiates the transmission. Slave mode is triggered by another master SPI
and is synchronized to the clock used by the master SPI. Note that this
option cannot be changed at run-time.

SuspensionMode
Suspension to use when debugging your program with Code Composer
Studio. When your program encounters a breakpoint, the selected
suspension mode determines whether to perform the program instruction.
Available options are Hard abort, Soft abort, and Free run. Hard abort
stops the program immediately. Soft abort stops when the current
receive/transmit sequence is complete. Free run continues running
regardless of the breakpoint.

F2812 eZdsp

3-106

eCAN
 Parameters that affect the extended control area network (eCAN) module.
Most of these parameters affect the eCAN bit timing.

eCAN Bit Timing

The eCAN protocol divides the nominal bit time into four segments, which
are reflected in the settable parameters below. The four segments are

- SYNCSEG — Time used to synchronize the nodes on the bus. It is always
one time quantum (TQ), which is defined as

where SYSCLK is the CAN module system clock frequency, and the
BaudRatePrescaler is defined below.

- PROP_SEG — Time used to compensate for physical delays in the network

- PHASE_SEG1 — Phase used to compensate for positive edge phase error

- PHASE_SEG2 — Phase used to compensate for negative edge phase error

The eCAN bit timing is shown in the following illustration.

TQ BaudRatePrescaler
SYSCLK

--=

����

�������

�����
����
�
���

� ! � !

����� ����"

��
����

����

�
����
����

F2812 eZdsp

3-107

Calculating Baud Rate

The length of a bit in the CAN module is determined by TSEG1, TSEG2, and
BaudRatePrescaler parameters. The baud rate is

where

BitTime = TSEG1+TSEG2+1

The following table shows the corresponding baud rates (for a 150-Mhz clock
as on the F2812 DSP) for the indicated parameter settings.

For additional details, refer to the 280x Enhanced Controller Area Network
(eCAN) Reference Guide, Literature Number SPRU074C, on the Texas
Instruments Web site.

The settable eCAN parameters are

BitRatePrescaler
Value by which to scale the bit rate. Valid values are from 1 to 256. As
noted in the equation above, this value determines the value of TQ.

EnhancedCANMode
Whether to use the CAN module in extended mode, which provides
additional mailboxes and time stamping. The default is True. Setting this
parameter to False enables only standard mode.

TSEG1 TSEG2 BaudRate
Prescaler

SJW SBG Baud Rate

8 6 20 2 0 0.5 Mbit/s

8 6 10 2 0 1 Mbit/s

8 6 5 2 0 2 Mbit/s

BaudRate SYSCLK
BaudRatePrescaler BitTime×
---=

F2812 eZdsp

3-108

SAM
Number of samples used by the CAN module to determine the CAN bus
level. Selecting Sample_one_time samples once at the sampling point.
Selecting Sample_three_times samples once at the sampling point and
twice before at a distance of TQ/2. A majority decision is made from the
three points.

SBG
Sets the message resynchronization triggering. Options are
Only_falling_edges and Both_falling_and_rising_edges.

SJW
Sets the synchronization jump width, which determines how many units of
TQ a bit is allowed to be shortened or lengthened when resynchronizing.

SelfTestMode
If True, sets the eCAN module to loopback mode, where a “dummy”
acknowledge message is sent back without needing an acknowledge bit.
The default is False.

TSEG1
Sets the value of time segment 1, which, with TSEG2 and BRP, determines
the length of a bit on the eCAN bus. TSEG1 must be greater than TSEG2
and the Information Processing Time (IPT). The IPT is the time needed to
process one bit and corresponds to two TQ units.
TSEG1 = PROP_SEG + PHASE_SEG1. Valid values for TSEG1 are from 1
through 16.

TSEG2
Sets the value of time segment 2 (PHASE_SEG2), which, with TSEG1 and
BRP, determines the length of a bit on the eCAN bus. TSEG2 must be less
than or equal to TSEG1 and greater than or equal to IPT. Valid values for
TSEG2 are from 1 through 8.

See Also C28x ADC, C28x eCAN Receive, C28x eCAN Transmit, C28x PWM

Float to IQN

3-109

3Float to IQNPurpose Convert floating-point number to IQ number

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block converts a floating-point number to an IQ number. The Q value of
the output is specified in the dialog.

Note The implementation of this block does not call the corresponding Texas
Instruments library function during code generation. The TI function uses a
global Q setting and the MathWorks code used by this block dynamically
adjusts the Q format based on the block input. See “About the
IQmath Library” on page 2-2 for more information.

Dialog Box

Q value
Q value from 1 to 30 that specifies the precision of the output

See Also Absolute IQN, Arctangent IQN, Division IQN, Fractional part IQN, Fractional
part IQN x int32, Integer part IQN, Integer part IQN x int32, IQN to Float,
IQN x int32, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2, Magnitude IQN,
Saturate IQN, Square Root IQN, Trig Fcn IQN

A Y

IQN

IQmath

Float to IQN

Fractional part IQN

3-110

3Fractional part IQNPurpose Fractional part of IQ number

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block returns the fractional portion of an IQ number. The returned value
is an IQ number in the same IQ format.

Note The implementation of this block does not call the corresponding Texas
Instruments library function during code generation. The TI function uses a
global Q setting and the MathWorks code used by this block dynamically
adjusts the Q format based on the block input. See “About the
IQmath Library” on page 2-2 for more information.

Dialog Box

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional part
IQN x int32, Integer part IQN, Integer part IQN x int32, IQN to Float, IQN x
int32, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2, Magnitude IQN, Saturate
IQN, Square Root IQN, Trig Fcn IQN

A Y

IQNfrac

IQmath

Fractional part IQN

Fractional part IQN x int32

3-111

3Fractional part IQN x int32Purpose Fractional part of result of multiplying IQ number and long integer

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block multiplies an IQ input and a long integer input and returns the
fractional portion of the resulting IQ number.

Note The implementation of this block does not call the corresponding Texas
Instruments library function during code generation. The TI function uses a
global Q setting and the MathWorks code used by this block dynamically
adjusts the Q format based on the block input. See “About the
IQmath Library” on page 2-2 for more information.

Dialog Box

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional part
IQN, Integer part IQN, Integer part IQN x int32, IQN to Float, IQN x int32,
IQN x IQN, IQN1 to IQN2, IQN1 x IQN2, Magnitude IQN, Saturate IQN,
Square Root IQN, Trig Fcn IQN

A

B
Y

IQNmpyl32frac

IQmath

Fractional part
IQN x int32

From Memory

3-112

3From MemoryPurpose Retrieve data from target memory

Library c2400spchiplib or c2800spchiplib in Embedded Target for TI C2000 DSP

Description This block retrieves data of the specified data type from a particular memory
address on the target.

Note Although the block icon and dialog box shown here are for the C24x,
the same block and dialog box apply to the C28x.

Dialog Box

Memory address
Address of the target memory location, in hexadecimal, from which to read
data.

From
Memory

C24x From Memory

From Memory

3-113

Note To ensure the correct operation of this block, you must specify exactly
the desired memory location. Refer to your Linker CMD file for available
memory locations.

Data type
Data type of the data to obtain from the above memory address. The data
is read as 16-bit data and then cast to the selected data type. Valid data
types are double, single, int8, uint8, int16, uint16, int32, and uint32.

Sample time
Time interval, in seconds, between consecutive reads from the specified
memory location.

Samples per frame
 Number of elements of the specified data type to be read from the memory
region starting at the given address.

See Also To Memory

From RTDX

3-114

3From RTDXPurpose Add RTDX input channel

Library rtdxBlocks in Embedded Target for TI C2000 DSP

Description When you generate code from Simulink in Real-Time Workshop with a From
RTDX block in your model, code generation inserts the C commands to create
an RTDX input channel on the target. Input channels transfer data from the
host to the target.

The generated code contains this command:

RTDX_enableInput(&channelname)

where channelname is the name you enter in Channel name.

Note From RTDX blocks work only in code generation and when your model
runs on your target. In simulations, this block does not perform any
operations, except generating an output matching your specified initial
conditions.

To use RTDX blocks in your model, you must do the following:

1 Add one or more To RTDX or From RTDX blocks to your model.

2 Download and run your model on your target.

3 Enable the RTDX channels from MATLAB or use Enable RTDX channel on
start-up on the block dialog.

4 Use the readmsg and writemsg functions in MATLAB to send and retrieve
data from the target over RTDX.

From RTDX
ichan1

From RTDX

From RTDX

3-115

Dialog Box

Channel name
Name of the input channel to be created by the generated code. The
channel name must meet C syntax requirements for length and character
content.

Enable blocking mode
Blocking mode instructs the target processor to pause processing until new
data is available from the From RTDX block. If you enable blocking and
new data is not available when the processor needs it, your process stops.
In nonblocking mode, the processor uses old data from the block when new
data is not available. Nonblocking operation is the default and is
recommended for most operations.

From RTDX

3-116

Initial conditions
Data the processor reads from RTDX for the first read. If blocking mode is
not enabled, you must have an entry for this option. Leaving the option
blank causes an error in Real-Time Workshop. Valid values are 0, null ([]),
or a scalar. The default value is 0.

0 or null ([]) outputs a zero to the processor. A scalar generates one output
sample with the value of the scalar. If Output dimensions specifies an
array, every element in the array has the same scalar or zero value. A null
array ([]) outputs a zero for every sample.

Sample time
Time between samples of the signal. The default is 1 second. This produces
a sample rate of one sample per second (1/Sample time).

Output dimensions
Dimenstions of a matrix for the output signal from the block. The first
value is the number of rows and the second is the number of columns. For
example, the default setting [1 64] represents a 1-by-64 matrix of output
values. Enter a 1-by-2 vector for the dimensions.

Frame-based
Sets a flag at the block output that directs downstream blocks to use
frame-based processing on the data from this block. In frame-based
processing, the samples in a frame are processed simultaneously. In
sample-based processing, samples are processed one at a time.
Frame-based processing can increase the speed of your application running
on your target. Note that throughput remains the same in samples per
second processed. Frame-based operation is the default.

Data type
Type of data coming from the block. Select one of the following types:

- Double — Double-precision floating-point values. This is the default.
Values range from -1 to 1.

- Single — Single-precision floating-point values ranging from -1 to 1.

- Uint8 — 8-bit unsigned integers. Output values range from 0 to 255.

- Int16 — 16-bit signed integers. With the sign, the values range from
-32768 to 32767.

- Int32 — 32-bit signed integers. Values range from -231 to (231-1).

From RTDX

3-117

Enable RTDX channel on start-up
Enables the RTDX channel when you start the channel from MATLAB.
With this selected, you do not need to use the enable function in the Link
for Code Composer Studio Development Tools to prepare your RTDX
channels. This option applies only to the channel you specify in Channel
name. You do have to open the channel.

See Also ccsdsp, readmsg, To RTDX, writemsg

Integer part IQN

3-118

3Integer part IQNPurpose Integer part of IQ number

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block returns the integer portion of an IQ number. The returned value is
a long integer.

Note The implementation of this block does not call the corresponding Texas
Instruments library function during code generation. The TI function uses a
global Q setting and the MathWorks code used by this block dynamically
adjusts the Q format based on the block input. See “About the
IQmath Library” on page 2-2 for more information.

Dialog Box

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional part
IQN, Fractional part IQN x int32, Integer part IQN x int32, IQN to Float, IQN
x int32, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2, Magnitude IQN, Saturate
IQN, Square Root IQN, Trig Fcn IQN

A Y

IQNint

IQmath

Integer part IQN

Integer part IQN x int32

3-119

3Integer part IQN x int32Purpose Integer part of result of multiplying IQ number and long integer

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block multiplies an IQ input and a long integer input and returns the
integer portion of the resulting IQ number as a long integer.

Note The implementation of this block does not call the corresponding Texas
Instruments library function during code generation. The TI function uses a
global Q setting and the MathWorks code used by this block dynamically
adjusts the Q format based on the block input. See “About the
IQmath Library” on page 2-2 for more information.

Dialog Box

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional part
IQN, Fractional part IQN x int32, Integer part IQN, IQN to Float, IQN x int32,
IQN x IQN, IQN1 to IQN2, IQN1 x IQN2, Magnitude IQN, Saturate IQN,
Square Root IQN, Trig Fcn IQN

A

B
Y

IQNmpyl32int

IQmath

Integer part
IQN x int32

Inverse Park Transformation

3-120

3Inverse Park TransformationPurpose Convert rotating reference frame vectors to two-phase stationary reference
frame

Library c28xdmclib in Embedded Target for TI C2000 DSP

Description This block converts vectors in an orthogonal rotating reference frame to a
two-phase orthogonal stationary reference frame. The transformation
implements these equations

and is illustrated in the following figure.

The inputs to this block are the direct axis (Vd) and quadrature axis (Vq)
components of the transformed signal in the rotating frame and the phase
angle (theta) between the stationary and rotating frames.

The outputs are the direct axis (Va) and the quadrature axis (Vb) components
of the transformed signal.

Note The implementation of this block does not call the corresponding Texas
Instruments library function during code generation. The TI function uses a

Vd

Vq

theta

Va

VbIPark

DMC

Inverse Park
Transformation

Va Vd θcos Vq θsin–=

Vb Vd θsin Vq θcos+=

Inverse Park Transformation

3-121

global Q setting and the MathWorks code used by this block dynamically
adjusts the Q format based on the block input. See “About the
IQmath Library” on page 2-2 for more information.

Dialog Box

References Detailed information on the DMC library is in the C/F 28xx Digital Motor
Control Library, Literature Number SPRC080, available at the Texas
Instruments Web site.

See Also Clarke Transformation, Park Transformation, PID Controller, Space Vector
Generator, Speed Measurement

IQN to Float

3-122

3IQN to FloatPurpose Convert IQ number to floating-point number

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block converts an IQ input to an equivalent floating-point number. The
output is a single floating-point number.

Note The implementation of this block does not call the corresponding Texas
Instruments library function during code generation. The TI function uses a
global Q setting and the MathWorks code used by this block dynamically
adjusts the Q format based on the block input. See “About the
IQmath Library” on page 2-2 for more information.

Dialog Box

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional part
IQN, Fractional part IQN x int32, Integer part IQN, Integer part IQN x int32,
IQN x int32, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2, Magnitude IQN,
Saturate IQN, Square Root IQN, Trig Fcn IQN

A Y

IQNtoF

IQmath

IQN to Float

IQN x int32

3-123

3IQN x int32Purpose Multiply IQ number with long integer

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block multiplies an IQ input and a long integer input and produces an IQ
output of the same Q value as the IQ input.

Note The implementation of this block does not call the corresponding Texas
Instruments library function during code generation. The TI function uses a
global Q setting and the MathWorks code used by this block dynamically
adjusts the Q format based on the block input. See “About the
IQmath Library” on page 2-2 for more information.

Dialog Box

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional part
IQN, Fractional part IQN x int32, Integer part IQN, Integer part IQN x int32,
IQN to Float, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2, Magnitude IQN,
Saturate IQN, Square Root IQN, Trig Fcn IQN

A

B
Y

IQNmpyl32

IQmath

IQN x int32

IQN x IQN

3-124

3IQN x IQNPurpose Multiply two IQ numbers with same Q format

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block multiplies two IQ numbers. Optionally, it can also round and
saturate the result.

Note The implementation of this block does not call the corresponding Texas
Instruments library function during code generation. The TI function uses a
global Q setting and the MathWorks code used by this block dynamically
adjusts the Q format based on the block input. See “About the
IQmath Library” on page 2-2 for more information.

Dialog Box

Multiply option
Type of multiplication to perform:

- Multiply — Multiply the numbers.

- Multiply with Rounding — Multiply the numbers and round the result.

- Multiply with Rounding and Saturation — Multiply the numbers and
round and saturate the result to the maximum value.

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional part
IQN, Fractional part IQN x int32, Integer part IQN, Integer part IQN x int32,

A

B
Y

IQNmpy

IQmath

IQN x IQN

IQN x IQN

3-125

IQN to Float, IQN x int32, IQN1 to IQN2, IQN1 x IQN2, Magnitude IQN,
Saturate IQN, Square Root IQN, Trig Fcn IQN

IQN1 to IQN2

3-126

3IQN1 to IQN2Purpose Convert IQ number to different Q format

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block converts an IQ number in a particular Q format to a different Q
format.

Note The implementation of this block does not call the corresponding Texas
Instruments library function during code generation. The TI function uses a
global Q setting and the MathWorks code used by this block dynamically
adjusts the Q format based on the block input. See “About the
IQmath Library” on page 2-2 for more information.

Dialog Box

Q value
Q value from 1 to 30 that specifies the precision of the output

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional part
IQN, Fractional part IQN x int32, Integer part IQN, Integer part IQN x int32,
IQN to Float, IQN x int32, IQN1 to IQN2, IQN1 x IQN2, Magnitude IQN,
Saturate IQN, Square Root IQN, Trig Fcn IQN

A Y

IQNtoIQX

IQmath

IQN1 to IQN2

IQN1 x IQN2

3-127

3IQN1 x IQN2Purpose Multiply two IQ numbers with different Q formats

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block multiples two IQ numbers when the numbers are represented in
different Q formats. The format of the result is specified in the dialog box.

Note The implementation of this block does not call the corresponding Texas
Instruments library function during code generation. The TI function uses a
global Q setting and the MathWorks code used by this block dynamically
adjusts the Q format based on the block input. See “About the
IQmath Library” on page 2-2 for more information.

Dialog Box

Q value
Q value from 1 to 30 that specifies the precision of the output

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional part
IQN, Fractional part IQN x int32, Integer part IQN, Integer part IQN x int32,
IQN to Float, IQN x int32, IQN x IQN, IQN1 to IQN2, Magnitude IQN,
Saturate IQN, Square Root IQN, Trig Fcn IQN

A

B
Y

IQNmpyIQx

IQmath

IQN1 x IQN2

LF2407 eZdsp

3-128

3LF2407 eZdspPurpose LF2407 eZdsp DSK target preferences

Library c2000tgtpreflib in Embedded Target for TI C2000 DSP

Description Options on the block mask let you set features of code generation for your
Spectrum Digital LF2407 eZdsp target. Adding this block to your Simulink
model provides access to building, linking, compiling, and targeting settings
you need to configure the code that Real-Time Workshop generates.

Note This block must be in your model at the top level and not in a
subsystem. It does not connect to any other blocks, but stands alone to set the
target preferences for the model.

Dialog Box

LF2407 eZdsp

LF2407 eZdsp

3-129

BuildOptios — CompilerOptions
Compiler Verbosity

Amount of information the compiler returns while it runs. Options are

- Verbose — Returns all compiler messages.

- Quiet — Suppresses compiler progress messages.

- Super_quiet — Suppresses all compiler messages.

KeepASMFiles
Whether Real-Time Workshop and the Embedded Target for TI C2000 DSP
save your assembly language (.asm) files after creation. The default is true
— .asm files are kept in your current directory. If you choose not to keep the
.asm files, set this option to false.

OptimizationLevel
Degree of optimization provided by the TI optimizing compiler to apply to
files in your project. For details about the compiler options, refer to your
CCS documentation. When you create new projects, the Embedded Target
for TI C2000 DSP sets the optimization to Function(-o2).

SymbolicDebugging
Whether to generate symbolic debugging directives that the C source-level
debugger uses and whether to enable assembly source debugging. By
default, this option is Yes — symbolic debugging is enabled.

BuildOptions — LinkerOptions
CreateMAPFile

Whether the linker produces a map of the input and output sections,
including null areas, and places the listing in a file in your current
directory with the name modelname.map. The default is True — the listing
is produced.

KeepOBJFiles
Whether Real-Time Workshop and the Embedded Target for TI C2000 DSP
save your object (.obj) files after creation. The linker uses object (.obj
extension) files to generate a single executable common object file format
(COFF) file that you run on the target DSP. The object files are saved to
your current project directory. Saving your .obj files can speed up the
compile process by not having to recompile files that you have not changed.
The default is True — the .obj files are retained.

LF2407 eZdsp

3-130

LinkerCMDFile
 Type of linker command file to use when the linker runs. Linker command
files contain linker or hex conversion utility options and the names of input
files to the linker or hex conversion utility. Linker command file types are

- Internal_memory_map — Although this option is supported, only very
small programs that will fit in the internal chip memory can be used. If
your program is too large, a linker error will occur. In general, you should
use Full_memory_map or Custom_file.

- Full_memory_map — Uses the large memory model on the target, which
does not restrict the size of the code and data sections to DSP memory only.
Your data can use the storage space up to the limits of the board.

- Custom_file — Uses the file in the LinkerCmdFileName field. This option
allows you to target custom boards. You must specify the full path of the
file. Note that the software does not verify that the commands in this file
are correct. Note that if you use Internal_ or Full_memory_map, specifying
a Custom_file has no effect.

When you select the Internal_memory_map option, the Embedded Target
for TI C2000 DSP specifies that only the available internal memory on the
LF2407 is used.

If you select Internal_memory_map, but your data or program requires far
calls, the TI compiler returns an error message like the following in the
CCS IDE:

error: can't allocate '.far'
or
error: can't allocate '.text'

indicating that your data does not fit in internal memory or your code or
program do not fit in internal memory. To eliminate these errors, select
Full_memory_map. Note that your program might run more slowly than if
you use the internal map option.

LF2407 eZdsp

3-131

BuildOptions — RunTimeOptions
BuildAction

Action taken by Real-Time Workshop when you click Build or press Ctrl+B
in the Simulation Parameters dialog box. The actions are cumulative —
each listed action adds features to the previous action on the list and
includes all the previous features:

- Generate_code_only — Directs Real-Time Workshop to generate C code
only from the model. It does not use the TI software tools, such as the
compiler and linker, and you do not need to have CCS installed. Also,
MATLAB does not create the handle to CCS that results from the other
options.

The build process for a model also generates the files modelname.c,
modelname.cmd, modelname.bld, and many others. It puts the files in a
build directory named modelname_C2000_rtw in your MATLAB working
directory. This file set contains many of the same files that Real-Time
Workshop generates to populate a CCS project when you choose
Create_CCS_Project for the build action.

- Create_CCS_Project — Directs Real-Time Workshop to start CCS and
populate a new project with the files from the build process. Selecting this
setting enables the CCS board number option so you can select which
installed board to target. This option offers a convenient way to build
projects in CCS.

- Build — Builds the executable COFF file, but does not download the file
to the target.

- Build_and_execute — Directs Real-Time Workshop to download and run
your generated code as an executable on your target. This is the default.

Note When you build and execute a model on your target, the Real-Time
Workshop build process resets the target automatically. You do not need to
reset the board before building models.

OverrunAction
Defines the action to take when an interrupt overrun occurs.

- Continue — Ignore overruns encountered while running the model. This
is the default.

LF2407 eZdsp

3-132

- Halt — Stop program execution.

CCSLink

CCSHandleName
Name of the CCS handle. Click in the edit box to change the name. When
you use Real-Time Workshop to build a model for a C2000 target,
Embedded Target for TI C2000 DSP makes a link between MATLAB and
CCS. If you have used the link portion of the Embedded Target for TI
C2000 DSP, you are familiar with function ccsdsp, which creates links
between the IDE and MATLAB. This option refers to the same link, called
cc in the function reference pages. Although MATLAB to CCS is a link, it
is actually a handle to an object that contains information about the object,
such as the target board and processor it accesses.

ExportCCSHandle
Whether to export the CCS handle to your MATLAB workspace, giving it
the name you assigned in CCSHandleName. If this is set to true, after you
build your model, you will see the CCS object in your MATLAB workspace
browser with the name you provided and class type ccsdsp.

LF2407 eZdsp

3-133

CodeGeneration

Scheduler
Algorithm

Algorithm to use for scheduling. The algorithm options are

- Preemptive_priority_based — This scheduler runs based on the timer
interrupt. The timer period is set based on the base rate sample time you
specify for your model. This algorithm supports multirate systems in
multitasking mode with priority-based preemption. The task for the
fastest group (the base rate task) runs first and other tasks run in the
order determined by their sample rates from faster tasks to slower tasks.
For more information, see the Models with Multiple Sample Rates section
of the Real Time Workshop documentation.

- Free_running — This scheduler does not use any interrupts. Tasks run in
priority-based order and the execution of each task depends only on how
fast the task can run on the given processor. This algorithm does not
support preemption or multitasking. (Selecting MultiTasking as the
Tasking mode in Configuration Parameters-Solver is not allowed for
this scheduling.) Overruns do not occur with this type of scheduling, so any
value in BuildOption-RuntimeOptions - OverrunAction is ignored.

Timer
Event manager (EV) timer to use for scheduling.

LF2407 eZdsp

3-134

TimerClockPrescaler
Clock divider factor by which to prescale the selected timer to produce the
desired model rate. The system clock for the TMS320LF2407 DSP is 40
MHz.

LF2407 eZdsp

3-135

DSPBoard

DSPBoardLabel
Name of the installed DSP board. Click in the edit box to change the label.

LF2407 eZdsp

3-136

Note The board label here must match exactly the label (name) of the board
entered in your Code Composer Studio setup.

DSPChip
CAN

Parameters that affect the control area network (CAN) module. Most of
these parameters affect the CAN bit timing.

CAN Bit Timing
The CAN protocol divides the nominal bit time into four segments, which
are reflected in the settable parameters below. The four segments are

- SYNCSEG — Time used to synchronize the nodes on the bus. It is always
one time quantum (TQ), which is defined as

where SYSCLK is the CAN module system clock frequency, and the
BaudRatePrescaler is defined below.

- PROP_SEG — Time used to compensate for the physical delays in the
network

- PHASE_SEG1 — Phase used to compensate for positive edge phase error

- PHASE_SEG2 — Phase used to compensate for negative edge phase error

The CAN bit timing is shown in the following illustration.

TQ BaudRatePrescaler
SYSCLK

--=

LF2407 eZdsp

3-137

Calculating Baud Rate
The length of a bit in the CAN module is determined by TSEG1, TSEG2,
and BaudRatePrescaler parameters. The baud rate is

where

BitTime = TSEG1+TSEG2+1

The following table shows the corresponding baud rates (for a 40-Mhz clock
as on the F2407 DSP) for the indicated parameter settings.

TSEG1 TSEG2 BaudRate
Prescaler

SJW SBG Baud Rate

4 3 10 2 0 0.5 Mbit/s

5 4 4 2 0 1 Mbit/s

6 3 2 2 0 2 Mbit/s

����

�������

�����
����
�
���

� ! � !

����� ����"

��
����

����

�
����
����

BaudRate SYSCLK
BaudRatePrescaler BitTime×
---=

LF2407 eZdsp

3-138

For additional details, refer to the TMS320LF/LC240xA DSP Controllers
Reference Guide - Systems and Peripherals, Literature Number
SPRU357B, on the Texas Instruments Web site.

The settable CAN parameters are

BaudRatePrescaler
Value by which to scale the baud rate. Valid values are from 1 to 256. As
noted in the equation above, this value determines the value of TQ.

SAM
Number of samples used by the CAN module to determine the CAN bus
level. Selecting Sample_one_time samples once at the sampling point.
Selecting Sample_three_times samples once at the sampling point and
twice before at a distance of TQ/2. A majority decision is made from the
three points.

SBG
Sets the message resynchronization triggering. Options are
Only_falling_edges and Both_falling_and_rising_edges.

SJW
Sets the synchronization jump width, which determines how many units of
TQ a bit is allowed to be shortened or lengthened when resynchronizing.

SelfTestMode
If True, sets the CAN module to loopback mode, where a “dummy”
acknowledge message is sent back without needing an acknowledge bit.

TSEG1
Sets the value of time segment 1, which, with TSEG2 and BRP, determines
the length of a bit on the CAN bus. TSEG1 must be greater than TSEG2
and the Information Processing Time (IPT). The IPT is the time needed to
process one bit and corresponds to two TQ units. TSEG1 = PROP_SEG +
PHASE_SEG1. See above for definitions of PROP_SEG and
PHASE_SEG1. Valid values for TSEG1 are from 1 through 16.

TSEG2
Sets the value of time segment 2 (PHASE_SEG2), which, with TSEG1 and
BRP, determines the length of a bit on the CAN bus. See above for

LF2407 eZdsp

3-139

definitions of PHASE_SEG2. TSEG2 must be less than or equal to TSEG1
and greater than or equal to IPT. Valid values for TSEG2 are from 1
through 8.

DSP Chip Label
DSP chip model. Select the DSP chip installed on your target. The chip
model is fixed for the LF2407 eZdsp. If you change the chip model, an error
will be generated in code generation.

SCI
Parameters that affect the serial communications interfaces (SCI) on the
target.

The settable parameters are

BaudRate
Baud rate for transmitting and receiving data.

CharacterLengthBits
Length in bits from 1 to 8 of each transmitted/received character.

EnableLoopBack
Select True to enable the loopback function for self-test and diagnostic
purposes only. When this is enabled, a C24x DSP’s Tx pin is internally
connected to its Rx pin and it can transmit data from its output port to its
input port to check the integrity of the transmission.

EnableParity
Select True to enable parity checking on the transmit/receive data.

NumberOfStopBits
Select whether to use 1 or 2 stop bits.

ParityMode
Type of parity to use. Avaliable selections are Odd parity or Even parity.
Enable Parity must be set to True to use the selected ParityMode.

SuspensionMode
Type of suspension to use when debugging your program with Code
Composer Studio. When your program encounters a breakpoint, the
selected suspension mode determines whether to perform the program

LF2407 eZdsp

3-140

instruction. Available options are Hard abort, Soft abort, and Free run.
Hard abort stops the program immediately. Soft abort stops when the
current receive/transmit sequence is complete. Free run continues running
regardless of the breakpoint.

UARTInterface
Protocol to use when sending or receiving UART mode data. Although
available protocols are Raw_data and To/From_host_block, only Raw_data
is supported. Raw_data sends or receives all data in its raw format, one
byte at a time.

To/From_host_block is not supported currently and is provided only for
use in demos. It uses the serial communication interface to communicate
with host-side SCI blocks. It attempts to read and interpret a specified
number of elements via a for loop using internal protocol.

SPI
Parameters that affect the serial peripheral interfaces (SPI) on the target.

The settable parameters are

BaudRateFactor
Factor to customize the baud rate, where the CPU rate is the target’s
working frequency and

Baud Rate = CPU Rate / (Baud Rate Factor + 1)

ClockPhase
Whether the data is output immediately (No_delay) or delayed by a half
clock cycle (Delay_half_cycle) with respect to the rising edge.

ClockPolarity
Whether the data is output at the Rising_edge or Falling_edge of the
system clock.

DataBits
Length in bits from 1 to 16 of each transmitted/received character. For
example, if you select 8, the maximum data that can be transmitted using
SPI is 28-1. If you send data greater than this value, the buffer overflows.

LF2407 eZdsp

3-141

Mode
Whether to run the SPI module in Master or Slave mode. Master mode
initiates the transmission. Slave mode is triggered by another master SPI
and is synchronized to the clock used by the master SPI. Note that this
option cannot be changed at run-time.

SuspensionMode
Suspension to use when debugging your program with Code Composer
Studio. When your program encounters a breakpoint, the selected
suspension mode determines whether to perform the program instruction.
Available options are Hard abort, Soft abort, and Free run. Hard abort
stops the program immediately. Soft abort stops when the current
receive/transmit sequence is complete. Free run continues running
regardless of the breakpoint.

See Also C24x ADC, C24x CAN Receive, C24x CAN Transmit, C24x PWM

Magnitude IQN

3-142

3Magnitude IQNPurpose Magnitude of two orthogonal IQ numbers

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block calculates the magnitude of two IQ numbers using

The output is an IQ number in the same Q format as the input.

Note The implementation of this block does not call the corresponding Texas
Instruments library function during code generation. The TI function uses a
global Q setting and the MathWorks code used by this block dynamically
adjusts the Q format based on the block input. See “About the
IQmath Library” on page 2-2 for more information.

Dialog Box

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional part
IQN, Fractional part IQN x int32, Integer part IQN, Integer part IQN x int32,
IQN to Float, IQN x int32, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2, Saturate
IQN, Square Root IQN, Trig Fcn IQN

A

B
Y

IQNmag

IQmath

Magnitude IQN

a2 b2
+

Park Transformation

3-143

3Park TransformationPurpose Convert two-phase stationary system vectors to rotating system vectors

Library c28xdmclib in Embedded Target for TI C2000 DSP

Description This block converts vectors in balanced two-phase orthogonal stationary
systems into an orthogonal rotating reference frame. The transformation
implements these equations

and is illustrated in the following figure.

The inputs to this block are the direct axis (Va) and the quadrature axis (Vb)
components of the transformed signal and the phase angle (theta) between the
stationary and rotating frames.

The outputs are the direct axis (Vd) and quadrature axis (Vq) components of the
transformed signal in the rotating frame.

The instantaneous inputs are defined by the following equations.

id = I sin(wt)

iq = I sin(wt + π/2)

Va

Vb

theta

Vd

VqPark

DMC

Park
Transformation

Vd Va θcos Vb θsin+=

Vq V– a θsin Vb θcos+=

Park Transformation

3-144

Note The implementation of this block does not call the corresponding Texas
Instruments library function during code generation. The TI function uses a
global Q setting and the MathWorks code used by this block dynamically
adjusts the Q format based on the block input. See “About the
IQmath Library” on page 2-2 for more information.

Dialog Box

References Detailed information on the DMC library is in the C/F 28xx Digital Motor
Control Library, Literature Number SPRC080, available at the Texas
Instruments Web site.

See Also Clarke Transformation, Inverse Park Transformation, PID Controller, Space
Vector Generator, Speed Measurement

PID Controller

3-145

3PID ControllerPurpose Digital PID controller

Library c28xdmclib in Embedded Target for TI C2000 DSP

Description This block implements a 32-bit digital PID controller with antiwindup
correction. The inputs are a reference input (ref) and a feedback input (fdb)
and the output (out) is the saturated PID output. The following diagram shows
a PID controller with antiwindup.

The differential equation describing the PID controller before saturation that
is implemented in this block is

upresat(t) = up(t) + ui(t) + ud(t)

where upresat is the PID output before saturation, up is the proportional term,
ui is the integral term with saturation correction, and ud is the derivative term.

The proportional term is

up(t) = Kpe(t)

where Kp is the proportional gain of the PID controller and e(t) is the error
between the reference and feedback inputs.

ref

fdb

out

PID

DMC

PID Controller

PID Controller

3-146

The integral term with saturation correction is

where Kc is the integral correction gain of the the PID controller.

The derivative term is

?

where Td is the derivative time of the PID controller. In discrete terms, the
derivative gain is defined as Kd = Td/T, and the integral gain is defined as Ki =
T/Ti, where T is the sampling period and Ti is the integral time of the PID
controller.

The above differential equations are transformed into a difference equations by
backward approximation.

Note The implementation of this block does not call the corresponding Texas
Instruments library function during code generation. The TI function uses a
global Q setting and the MathWorks code used by this block dynamically
adjusts the Q format based on the block input. See “About the
IQmath Library” on page 2-2 for more information.

ui t()
Kp
Ti
------- e ς() ς K+ c u t() upresat– t()()d

0
t
∫=

ud t() KpTd
de t()

dt
--------------=

PID Controller

3-147

Dialog Box

Proportional gain
Amount of proportional gain (Kp) to apply to the PID

Integral gain
Amount of gain (Ki) to apply to the integration equation

Integral correction gain
Amount of correction gain (Kc) to apply to the integration equation

Derivative gain
Amount of gain (Kd) to apply to the derivative equation.

Minimum output
Minimum allowable value of the PID output

Maximum output
Maximum allowable value of the PID output

PID Controller

3-148

References Detailed information on the DMC library is in the C/F 28xx Digital Motor
Control Library, Literature Number SPRC080, available at the Texas
Instruments Web site.

See Also Clarke Transformation, Inverse Park Transformation, Park Transformation,
Space Vector Generator, Speed Measurement

Ramp Control

3-149

3Ramp ControlPurpose Create a ramp-up and ramp-down function

Library c28xdmclib in Embedded Target for TI C2000 DSP

Description This block implements a ramp-up and ramp-down function. The input is a
target value and the outputs are the set point value (setpt) and a flag. The
flag output is set to 7FFFFFFFh when the output setpt value reaches the input
target value. The target and setpt values are signed 32-bit fixed-point
numbers with Q values between 16 and 29. The flag is a long number.

The target value is compared with the setpt value. If they are not equal, the
output setpt is adjusted up or down by a fixed step size (0.0000305).

If the fixed step size is relatively large compared to the target value, the
output may oscillate around the target value.

Dialog Box

Maximum delay rate
Value that is multiplied by the sampling loop time period to determine the
time delay for each ramp step. Valid values are integers greater than 0.

target

setpt

flagRampCntl

DMC

Ramp
Control

Ramp Control

3-150

Minimum limit
Minimum allowable ramp value. If the input falls below this value, it will
be saturated to this minimum. The smallest value you can enter is the
minimum value that can be represented in fixed-point data format by the
input and output blocks to which this Ramp Control block is connected in
your model. If you enter a value below this minimum, an error occurs at the
start of code generation or simulation. For example, if your input is in Q29
format, its minimum value is -4.

Maximum limit
Maximum allowable ramp value. If the input goes above this value, it will
be reduced to this maximum. The largest value you can enter is the
maximum value that can be represented in fixed-point data format by the
input and output blocks to which this Ramp Control block is connected in
your model. If you enter a value above this maximum, an error occurs at
the start of code generation or simulation. For example, if your input is in
Q29 format, its maximum value is 3.9999....

See Also Ramp Generator

Ramp Generator

3-151

3Ramp GeneratorPurpose Generate ramp output

Library c28xdmclib in Embedded Target for TI C2000 DSP

Description This block generates ramp output (out) from the slope of the ramp signal
(gain), DC offset in the ramp signal (offset), and frequency of the ramp signal
(freq) inputs. All of the inputs and output are 32-bit fixed-point numbers with
Q values between 1 and 29.

Algorithm The block's output (out) at the sampling instant k is governed by the following
algorithm:

out(k) = angle(k) * gain(k) + offset(k)

For out(k) > 1, out(k) = out(k) - 1. For out(k) < -1, out(k) = out(k) + 1

Angle(k) is defined as follows:

angle(k) = angle(k-1) + freq(k) * Maximum step angle

for angle(k) > 1, angle(k) = angle(k) - 1

for angle(k) < -1, angle(k) = angle(k) + 1

The frequency of the ramp output is controlled by a precision frequency
generation algorithm that relies on the modulo nature of the finite length
variables. The frequency of the output ramp signal is equal to

f = (Maximum step angle * sampling rate) / 2m

where m represents the fractional length of the inputs’ data type.

All math operations are carried out in fixed-point arithmetic, where the
fixed-point fractional length is determined by the block's inputs.

gain

offset

freq

out

RampGen

DMC

Ramp
Generator

Ramp Generator

3-152

Dialog Box

Maximum step angle
The maximum step size, which determines the rate of change of the output
(i.e., the minimum period of the ramp signal).

Examples The following model demonstrates the Ramp Generator block. The Constant
and Scope blocks are available in Simulink Commonly Used Blocks.

In your model, select Configuration Parameters from the Simulation menu.
On the Solver pane, set Type to Fixed-step and Solver to discrete (no

Ramp Generator

3-153

continuous ststes). Set the parameter values for the blocks as shown in the
following table.

When you run the model, the Scope block generates the following output (drag
a zoom box around a portion of the output to change the display).

Block Connects to Parameter Value

Constant Ramp Generator - gain Constant value
Sample time
Output data type
Output scalig value

1
0.001
sfix(32)
2^-9

Constant Ramp Generator - offset Constant value
Sample time
Output data type
Output scalig value

0
inf
sfix(32)
2^-9

Constant Ramp Generator - freq Constant value
Sample time
Output data type
Output scalig value

0.001
inf
sfix(32)
2^-9

Ramp Generator Scope (Simulink block) Maximum step angle 1

Ramp Generator

3-154

The expected frequency of the output is

f = (maximum step angle * sampling rate) / 2m

f = (1 * 1000) / 2^9 = 1.9531 Hz

The expected period is then

T = 1/f = 0.5120 s

which is what the above Scope output shows.

See Also Ramp Control

Saturate IQN

3-155

3Saturate IQNPurpose Saturate an IQ number

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block saturates an input IQ number to the specified positive and negative
limits. The returned value is an IQ number of the same Q value as the input.

Note The implementation of this block does not call the corresponding Texas
Instruments library function during code generation. The TI function uses a
global Q setting and the MathWorks code used by this block dynamically
adjusts the Q format based on the block input. See “About the
IQmath Library” on page 2-2 for more information.

Dialog Box

Positive Limit
Maximum positive value to which to saturate

Negative Limit
Minimum negative value to which to saturate

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional part
IQN, Fractional part IQN x int32, Integer part IQN, Integer part IQN x int32,
IQN to Float, IQN x int32, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2,
Magnitude IQN, Square Root IQN, Trig Fcn IQN

A Y

IQsat

IQmath

Saturate IQN

Space Vector Generator

3-156

3Space Vector GeneratorPurpose Duty ratios for stator reference voltage

Library c28xdmclib in Embedded Target for TI C2000 DSP

Description This block calculates appropriate duty ratios needed to generate a given stator
reference voltage using space vector PWM technique. Space vector pulse width
modulation is a switching sequence of the upper three power devices of a
three-phase voltage source inverter and is used in applications such as AC
induction and permanent magnet synchronous motor drives. The switching
scheme results in three pseudo-sinusoidal currents in the stator phases. This
technique approximates a given stator reference voltage vector by combining
the switching pattern corresponding to the basic space vectors.

The inputs to this block are

• Alpha component — the reference stator voltage vector on the direct axis
stationary reference frame (Ua)

• Beta component — the reference stator voltage vector on the direct axis
quadrature reference frame (Ub)

The alpha and beta components are transformed via the inverse Clarke
equation and projected into reference phase voltages. These voltages are
represented in the outputs as the duty ratios of the PWM1 (Ta), PWM3 (Tb),
and PWM5 (Tc).

Note The implementation of this block does not call the corresponding Texas
Instruments library function during code generation. The TI function uses a
global Q setting and the MathWorks code used by this block dynamically
adjusts the Q format based on the block input. See “About the
IQmath Library” on page 2-2 for more information.

Space Vector Generator

3-157

Dialog Box

References Detailed information on the DMC library is in the C/F 28xx Digital Motor
Control Library, Literature Number SPRC080, available at the Texas
Instruments Web site.

See Also Clarke Transformation, Inverse Park Transformation, Park Transformation,
PID Controller, Speed Measurement

Speed Measurement

3-158

3Speed MeasurementPurpose Motor speed

Library c28xdmclib in Embedded Target for TI C2000 DSP

Description This block calculates the motor speed based on the rotor position when the
direction information is available. The inputs are the electrical angle (theta)
and the direction of rotation (dir) from the QEP encoder. The outputs are the
speed in per-unit frequency (freq) and the speed in revolutions per minute
(rpm).

Note The implementation of this block does not call the corresponding Texas
Instruments library function during code generation. The TI function uses a
global Q setting and the MathWorks code used by this block dynamically
adjusts the Q format based on the block input. See “About the
IQmath Library” on page 2-2 for more information.

Dialog Box

Base speed
Nominal speed of the machine in rpm.

theta

dir

freq

RPMSpeed

DMC

Speed Measurement

Speed Measurement

3-159

Differentiator constant
Constant used in the differentiator equation that describes the rotor
position.

Low-pass filter constant
Constant to apply to the low-pass filter. This constant is 1/(1+T*(2πfc)),
where T is the sampling period and fc is the cutoff frequency. The 1/(2πfc)
term is the low-pass filter time constant. A low-pass filter is used in this
block to reduce amplifying noise generated by the differentiator.

References Detailed information on the DMC library is in the C/F 28xx Digital Motor
Control Library, Literature Number SPRC080, available at the Texas
Instruments Web site.

See Also Clarke Transformation, Inverse Park Transformation, Park Transformation,
PID Controller, Space Vector Generator

Square Root IQN

3-160

3Square Root IQNPurpose Square root or inverse square root of IQ number

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block calculates the square root or inverse square root of an IQ number
and returns an IQ number of the same Q format. The block uses table lookup
and a Newton-Raphson approximation.

Note The implementation of this block does not call the corresponding Texas
Instruments library function during code generation. The TI function uses a
global Q setting and the MathWorks code used by this block dynamically
adjusts the Q format based on the block input. See “About the
IQmath Library” on page 2-2 for more information.

Note Negative inputs to this block return a value of zero.

Dialog Box

Function
Whether to calculate the square root or inverse square root

- Square root (_sqrt) — Compute the square root.

- Inverse square root (_isqrt) — Compute the inverse square root.

A Y

IQNsqrt

IQmath

Square Root IQN

Square Root IQN

3-161

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional part
IQN, Fractional part IQN x int32, Integer part IQN, Integer part IQN x int32,
IQN to Float, IQN x int32, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2,
Magnitude IQN, Saturate IQN, Trig Fcn IQN

To Memory

3-162

3To MemoryPurpose Write data to target memory

Library c2400dspchiplib in Embedded Target for TI C2000 DSP

Description This block sends data of the specified data type to a particular memory address
on the target.

Note Although the block icon and dialog box shown here are for the C28x,
the same block and dialog box apply to the C24x.

Dialog Box Parameters Panel

Memory address
Address of the target memory location, in hexadecimal, to which to write
data

Data type
Type of data to be written to the above memory address. Valid data types
are double, single, int8, uint8, int16, uint16, int32, and uint32. The
data is cast from the selected data type to 16-bit data.

To
Memory

C24x To Memory

To Memory

3-163

Write at initialization
Whether to write the specified Value at program start

Value
First value of data to be written to memory at program start

Write at termination
Whether to write the specified Value at program end

Value
Last value of data to be written to memory at program termination

Write at every sample time
Whether to write data in real time during program execution

Note If your To Memory block is set to write to memory at every sample time
interval (that is, it has an incoming port) and it receives a vector signal input
of N elements, a corresponding memory region starting with the specified
Memory address is updated at every sample time. If you specify an Initial
and/or Termination value, that value is written to all locations in the same
memory region at initialization and/or termination.

If your To Memory block does not write to memory at every sample time (that
is, it does not have an incoming port) and you specify an Initial and/or
Termination value, that value is written to a single memory location that
corresponds to the specified Memory address.

To Memory

3-164

Custom Code Panel

Insert custom code before memory write
C-code to execute before writing to the specified memory address. An
example of code that may be inserted here is

asm (EALLOW)

which enables write access to the device emulation registers on the the
C2812 DSP.

Insert custom code after memory write
C-code to execute after writing to the specified memory address. An
example of code that may be inserted here is

asm (DIS)

which disables write access to the device emulation registers on the the
C2812 DSP.

See Also From Memory

To RTDX

3-165

3To RTDXPurpose Add RTDX output channel

Library rtdxBlocks in Embedded Target for TI C2000 DSP

Description When you generate code from Simulink in Real-Time Workshop with a To
RTDX block in your model, code generation inserts the C commands to create
an RTDX output channel on the target. Output channels transfer data from the
target to the host.

The generated code contains this command:

RTDX_enableOutput(&channelname)

where channelname is the name you enter in Channel name.

Note To RTDX blocks work only in code generation and when your model
runs on your target. In simulations, this block does not perform any
operations.

To use RTDX blocks in your model, you must do the following:

1 Add one or more To RTDX or From RTDX blocks to your model.

2 Download and run your model on your target.

3 Enable the RTDX channels from MATLAB or use Enable RTDX channel on
start-up on the block dialog.

4 Use the readmsg and writemsg functions in MATLAB to send and retrieve
data from the target over RTDX.

To RTDX
ochan1

To RTDX

To RTDX

3-166

Dialog Box

Channel name
Name of the output channel to be created by the generated code. The
channel name must meet C syntax requirements for length and character
content.

Enable RTDX channel on start-up
Enables the RTDX channel when you start the channel from MATLAB.
With this selected, you do not need to use the enable function in the Link
for Code Composer Studio Development Tools to prepare your RTDX
channels. This option applies only to the channel you specify in Channel
name. You do have to open the channel.

See Also From RTDX

Trig Fcn IQN

3-167

3Trig Fcn IQNPurpose Sine, cosine, or arc tangent of IQ number

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block calculates basic trigonometric functions and returns the result as an
IQ number. Valid Q values for _IQsinPU and _IQcosPU are 1 to 30. For all
others, valid Q values are from 1 to 29.

Note The implementation of this block does not call the corresponding Texas
Instruments library function during code generation. The TI function uses a
global Q setting and the MathWorks code used by this block dynamically
adjusts the Q format based on the block input. See “About the
IQmath Library” on page 2-2 for more information.

Dialog Box

Function
Type of trigonometric function to calculate:

- _IQsin — Compute the sine (sin(A)), where A is in radians.

- _IQsinPU — Compute the sine per unit (sin(2*pi*A)), where A is in
per-unit radians.

- _IQcos — Compute the cosine (cos(A)), where A is in radians.

- _IQcosPU — Compute the cosine per unit (cos(2*pi*A)), where A is in
per-unit radians.

- _IQatan — Compute the arc tangent (tan(A)), where A is in radians.

A Y

IQNtrig

IQmath

Trig Fcn IQN

Trig Fcn IQN

3-168

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional part
IQN, Fractional part IQN x int32, Integer part IQN, Integer part IQN x int32,
IQN to Float, IQN x int32, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2,
Magnitude IQN, Saturate IQN, Square Root IQN

Index-1

Index

A
Absolute IQN block 3-9
ADC blocks

C24x 3-12
C28x 3-52

 analog-to-digital converter
See ADC blocks

applications
TI C2000 1-2

Arctangent IQN block 3-10
asymmetric vs. symmetric waveforms 3-76

B
Baud rate 3-137
blocking mode

C24x 3-22
blocks

adding to model 1-26
recommendations 1-13

build options 3-97

C
c2000lib startup 1-17
C24x ADC block 3-12
C24x CAN Receive block 3-16
C24x CAN Transmit block 3-20, 3-23
C24x CAP block 3-23
C24x GPIO Digital Input block 3-28
C24x PWM block 3-34
C24x QEP block 3-43
C24x SCI Receive block 3-45
C24x SCI Transmit block 3-47
C24x SPI Receive block 3-49
C24x SPI Transmit block 3-51
C24xGPIO Digital Output block 3-31

C28x ADC block 3-52
C28x CAP block 3-56
C28x eCAN Receive block 3-61
C28x eCAN Transmit block 3-65
C28x GPIO Digital Input block 3-68
C28x GPIO Digital Output block 3-72
C28x PWM block 3-75
C28x QEP block 3-84
C28x SCI Receive block 3-86
C28x SCI Transmit block 3-88
C28x SPI Receive block 3-90
C28x SPI Transmit block 3-92
CAN bit timing 3-136
CAN/eCAN

C24x Receive block 3-16
C24x Transmit block 3-20, 3-23
C28x Transmit block 3-65
C28xReceive block 3-61
timing 3-106

capture block
C24x 3-23
C28x 3-56

CCS
link options 3-100
See also Code Composer Studio

Clarke Transformation block 3-93
clock speed 1-10
Code Composer Studio 1-8

projects 1-30
code generation

options 3-101
overview 1-29

code optimization 2-9
compiler options 3-97
configuration default 1-8

Index

Index-2

control area network
See CAN/eCAN

control logic 3-38
conversion

float to IQ number 3-109
IQ number to different IQ number 3-126
IQ number to float 3-122

CPU clock speed 1-10

D
data types

conversion 2-9
deadband

C24x PWM 3-80
C28x PWM 3-39

default build configuration 1-8
digital motor control

See DMC library
Division IQN block 3-95, 3-151
DMC library

Clarke Transformation 3-93
Inverse Park Transformation 3-120
Park Tansformation 3-143
PID controller 3-145
ramp control 3-149
ramp generator 3-151
Space Vector Generator 3-156
Speed Measurement 3-158

DSP board
target preferences options 3-102

duty ratios 3-156

E
event manager timer 3-35

F
F2812 eZdsp block 3-96
fixed-point numbers 2-4
Float to IQN block 3-109
floating-point numbers

convert to IQ number 3-109
four-quadrant arctangent 3-10
Fractional part IQN block 3-110
Fractional part IQN x int32 block 3-111
From Memory block 3-112
From RTDX block 3-114

G
GPIO input

C24x 3-28
C28x 3-68

GPIO output
C24x 3-31
C28xt 3-72

H
hardware 1-3

I
I/O

C24x input 3-28
C24x output 3-31
C28x input 3-68
C28x output 3-72

Integer part IQN block 3-118
Integer part IQN x int32 block 3-119
Inverse Park Transformation block 3-120

Index

Index-3

IQ Math library 2-2
Absolute IQN block 3-9
Arctangent IQN block 3-10
building models 2-9
code optimization 2-9
common characteristics 2-3
Division IQN block 3-95
Float to IQN block 3-109
Fractional part IQN block 3-110
Fractional part IQN x int32 block 3-111
Integer part IQN block 3-118
Integer part IQN x int32 block 3-119
IQN to Float block 3-122
IQN x int32 block 3-123
IQN x IQN block 3-124
IQN1 to IQN2 block 3-126
IQN1 x IQN2 block 3-127
Magnitude IQN block 3-142
Q format notation 2-5
Saturate IQN block 3-155
Square Root IQN block 3-160
Trig Fcn IQN block 3-167

IQ numbers
convert from float 3-109
convert to different IQ 3-126
convert to float 3-122
fractional part 3-110
integer part 3-118
magnitude 3-142
mulitply by int32 fractional result 3-111
multiply 3-124
multiply by int32 3-123
multiply by int32 integer part 3-119
square root 3-160
trigonometric functions 3-167

IQN to Float block 3-122
IQN x int32 block 3-123

IQN x IQN block 3-124
IQN1 to IQN2 block 3-126
IQN1 x IQN2 block 3-127

L
LF2407 eZdsp block 3-128
linker options 3-97

M
Magnitude IQN block 3-142
mailbox 3-17
math blocks

See IQ Math library
MathWorks software 1-4
messages

F2812 eZdsp 3-62
LF2401 eZdsp 3-17

model
add blocks 1-26
building overview 1-15
creation overview 1-12
IQmath library 2-9

multiplication
IQN x int32 3-123
IQN x int32 fractional part 3-111
IQN x int32 integer part 3-119
IQN x IQN 3-124
IQN1 x IQN2 3-127

O
operating system requirements 1-3
optimization code 2-9

Index

Index-4

P
Park Transformation block 3-143
phase conversion 3-93
PID controller 3-145
prescaler 3-40
projects

CCS 1-30
pulse wave modulators

See PWM blocks
PWM blocks

C24x 3-34
C28x 3-75
control logic 3-38
deadband 3-39

Q
Q format 2-5
quadrature encoder pulse circuit

C24x 3-43
C28x 3-84

R
ramp control block 3-149
ramp generator block 3-151
Real Time Workshop build options

F2812 eZdsp 3-131
LF2407 eZdsp 3-99

receive 3-16
reference frame conversion

inverse Park transformation 3-120
Park transformation 3-143

reset 1-15

RTDX
from 3-114
to 3-165

runtime options 3-99

S
sample time

F2812 eZdsp 3-63
LF2407 eZdsp 3-18
maximum 1-10

Saturate IQN block 3-155
scheduling 1-10
serial communications interface

C24x receive 3-45
C24x transmit 3-47
C28x receive 3-86
C28x transmit 3-88

serial peripheral interface
C24x receive 3-49
C24x transmit 3-51
C28x receive 3-90
C28x transmit 3-92

setting up hardware 1-3
signed fixed-point numbers 2-4
simulation parameters

automatic 1-20
setting 1-14

software requirements 1-4
Space Vector Generator block 3-156
Speed Measurement block 3-158
Square Root IQN block 3-160
startup c2000lib 1-17

Index

Index-5

T
target configuration

example 3-96
LF2407 eZdsp 3-128

target model creation 1-12
target preferences

compiler options 3-97
DSP board options 3-102
linker options 3-97

Target Preferences blocks
F2812 eZdsp 3-96
LF2407 eZdsp 3-128

TI software 1-4
timing

CAN/eCAN 3-106
interrupts 1-10

To Memory block 3-162
To RTDX block 3-165
transmit 3-20
Trig Fcn IQN block 3-167

W
waveforms 3-76

	Getting Started
	What Is the Embedded Target for the TI TMS320C2000 DSP Platform?
	Suitable Applications

	Setting Up and Configuring
	Platform Requirements — Hardware and Operating System
	Supported Hardware for Targets
	Software Requirements
	Verifying the Configuration

	Embedded Target for TI C2000 and Code Composer Studio
	Default Project Configuration

	Data Type Support
	Scheduling and Timing
	High Speed Peripheral Clock

	Overview of Creating Models for Targeting
	Online Help
	Notes About Selecting Blocks for Your Models
	S-Function Builder Blocks
	Setting Simulation Configuration Parameters
	Building Your Model

	Using the c2000lib Blockset
	Hardware Setup
	Starting the c2000lib Library
	Setting Up the Model
	Adding Blocks to the Model
	Generating Code from the Model
	Creating Code Composer Studio Projects Without Loading

	Using the IQmath Library
	About the IQmath�Library
	Common Characteristics

	Fixed-Point Numbers
	Signed Fixed-Point Numbers
	Q Format Notation

	Building Models
	Converting Data Types
	Using Sources and Sinks
	Choosing Blocks to Optimize Code

	Block Reference
	Blocks — Categorical List
	C2000 Target Preferences Library (c2000tgtpreflib)
	Host-side CAN Blocks (c2000canlib)
	C2000 RTDX Instrumentation Library (rtdxBlocks)
	C2800 DSP Chip Support Library (c2800dspchiplib)
	C2400 DSP Chip Support Library (c2400dspchiplib)
	C28x Digital Motor Control Library (c28xdmclib)
	C28x IQmath Library (tiiqmathlib)

	Blocks — Alphabetical List
	Absolute IQN
	Arctangent IQN
	C24x ADC
	C24x CAN Receive
	C24x CAN Transmit
	C24x CAP
	C24x GPIO Digital Input
	C24x GPIO Digital Output
	C24x PWM
	C24x QEP
	C24x SCI Receive
	C24x SCI Transmit
	C24x SPI Receive
	C24x SPI Transmit
	C28x ADC
	C28x CAP
	C28x eCAN Receive
	C28x eCAN Transmit
	C28x GPIO Digital Input
	C28x GPIO Digital Output
	C28x PWM
	C28x QEP
	C28x SCI Receive
	C28x SCI Transmit
	C28x SPI Receive
	C28x SPI Transmit
	Clarke Transformation
	Division IQN
	F2812 eZdsp
	Float to IQN
	Fractional part IQN
	Fractional part IQN x int32
	From Memory
	From RTDX
	Integer part IQN
	Integer part IQN x int32
	Inverse Park Transformation
	IQN to Float
	IQN x int32
	IQN x IQN
	IQN1 to IQN2
	IQN1 x IQN2
	LF2407 eZdsp
	Magnitude IQN
	Park Transformation
	PID Controller
	Ramp Control
	Ramp Generator
	Saturate IQN
	Space Vector Generator
	Speed Measurement
	Square Root IQN
	To Memory
	To RTDX
	Trig Fcn IQN

	Index

